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It is widely accepted that phonon-mediated high-temperature superconductivity is impossible at ambient
pressure, because of the very large effective masses of polarons or bipolarons at strong electron-phonon
coupling. Here we challenge this belief by showing that strongly bound yet very light bipolarons appear for
strong Peierls coupling. These bipolarons also exhibit many other unconventional properties; e.g., at strong
coupling there are two low-energy bipolaron bands that are stable against strong Coulomb repulsion. Using
numerical simulations and analytical arguments, we show that these properties result from the specific form
of the phonon-mediated interaction, which is of “pair hopping” instead of regular density-density type. This
unusual effective interaction is bound to have nontrivial consequences for the superconducting state
expected to arise at finite carrier concentrations and should favor a large critical temperature.
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Introduction.—Since the discovery of superconductivity
in Hg with critical temperature Tc ¼ 4.2 K [1], the quest
for materials with high Tc has been a central driver of
research in condensed matter physics, leading to the
discovery of many other superconductors, including the
unconventional “high”-Tc cuprate [2] and iron-based [3,4]
families, besides many conventional and unconventional
low-Tc ones.
Conventional low-Tc superconductivity is understood to

be a consequence of electron-phonon coupling [5,6]:
exchange of phonons binds electrons into Cooper pairs
[7], which condense into a superfluid. While there is no
proven theory of high-Tc superconductivity, it is widely
accepted that phonon-mediated superconductivity cannot
exhibit high Tc (at ambient pressure). High Tc would
require strong electron-phonon coupling, but in this limit
the electrons become dressed by clouds of phonons
forming polarons, with a renormalized effective mass
[8–21]. As the coupling strength increases, the effective
mass grows faster than the phonon-mediated binding,
resulting in suppression of Tc [22]. In other words, it is
generally believed impossible to form bipolarons (polaron
pairs bound by phonon exchange) that remain light at
strong electron-phonon coupling, making high-Tc bipolar-
onic superconductivity very unlikely [22,23].
Such arguments, however, are based on studies of the

Holstein [13] and Fröhlich [10,12] models. There, phonons
modulate the potential energy of the electrons, which
explains why polarons and bipolarons become heavier as
the coupling strength increases. On the other hand, the

coupling to phonons may also modulate the hopping
integrals, as described by the Peierls model [25–27] (also
known as the Su-Schrieffer-Heeger (SSH) model for
polyacetylene [28,29]). Recently, it was shown that single
polarons in this latter class of models can be light at strong
coupling strengths [30].
Here we study for the first time phonon-mediated bind-

ing of electrons into bipolarons in the Peierls model. We
show that Peierls electron-phonon coupling leads to strong
phonon-mediated attraction between electrons, which
results in the formation of strongly bound yet very light
bipolarons: their mass at strong coupling is close to twice
the free electron mass. Such light bipolarons are expected
to condense into a superfluid at very high temperatures
[22,24]. Our work thus points to a new direction in the
search for high-Tc superconductors: designing materials
with electron-phonon coupling predominantly of the
Peierls type can lead to phonon-mediated superconductiv-
ity at high temperatures.
Model and methods.—We study the singlet state of two

spin-1=2 fermions in an infinite one-dimensional chain
described by the HamiltonianH¼HeþHphþV̂e-ph, where

He ¼ −t
X

i;σ

ðc†i;σciþ1;σ þ H:c:Þ þ
X

i

UðδÞn̂i;↑n̂iþδ;↓ ð1Þ

is the extended Hubbard model of bare electrons with on
site Uð0Þ ¼ U and nearest-neighbor Uð1Þ ¼ V screened
repulsion, i is the site index, and n̂i;σ ¼ c†i;σci;σ counts
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particles with spin σ at site i. Hph ¼ Ω
P

i b
†
i bi (in units of

ℏ) is the phonon Hamiltonian describing a single Einstein
mode with frequency Ω, and

V̂e-ph ¼ g
X

i;σ

ðc†i;σciþ1;σþH:c:Þðb†i þbi−b†iþ1−biþ1Þ ð2Þ

is the Peierls electron-phonon coupling [30]. We character-
ize the electron-phonon strength using the dimensionless
effective coupling λ ¼ 2g2=ðΩtÞ. We investigate the singlet
eigenstates using variational exact diagonalization (VED)
[31–33] and an extension of the momentum average (MA)
approach [21,30,34–36].
Numerical results.—We first set UðδÞ ¼ 0 and inves-

tigate the stability and properties of the resulting bipolar-
ons. The role played by UðδÞ is discussed later.
Figure 1 shows the evolution with λ of the low-energy

region of the singlet sector for UðδÞ ¼ 0 and Ω ¼ 3 (all
energies are in units of t ¼ 1). The shaded gray area shows
the lower part of the two-polaron continuum: these states
describe two unbound polarons, their energies being the
convolution of two single polaron spectra. The dark red
region shows the location of the lowest bipolaron band.
VED confirms its existence for all λ > 0, although for weak
coupling λ≲ 0.3, the bipolaron ground state lies just
below the continuum and cannot be resolved on this
scale. With increasing λ, the bipolaron band moves further
below the continuum, and for λ≳ 0.57 it becomes fully
separated from it. For strong coupling λ > 1, this band is

accompanied by a higher energy bipolaron band (salmon-
colored region), whose evolution with λ closely mirrors that
of the lower band, suggesting a common origin. Note that
this second band lies below the bipolaron þ one-phonon
continuum (not shown) that starts at Ω above the ground
state, and therefore it is an infinitely lived bipolaron.
Clearly the bandwidths of both bipolaron bands are wide

even at extremely strong couplings λ ∼ 2 (this persists for
λ > 2 but such values are unphysical), showing that the
bipolarons remain light even when very strongly bound.
This is further confirmed in Fig. 2, where we plot the low-
energy bipolaron’s effective mass m�, in units of two free
particle masses, m0 ¼ 2me ¼ ℏ2=ta2, where a is the lattice
constant.m� varies nonmonotonically with λ, with a peak at
λ ∼ 0.325 where the bipolaron ground-state energy starts to
drop fast below the lower edge of the two-polaron
continuum (see Fig. 1); i.e., the bipolaron crosses over
into the strongly bound regime. Importantly, the ratio
m�=m0 stays close to 1 for λ≳ 1. In other words, the
Peierls bipolaron’s effective mass remains comparable to
that of a pair of free fermions even at very strong coupling
λ ¼ 2. For comparison, for the same Ω and λ ¼ 2, the
Holstein bipolaron’s bandwidth is 0.0135; i.e., its mass is
larger by about two orders of magnitude.
The existence of strongly bound yet light Peierls

bipolarons at strong coupling is our central result.
We now discuss the second bipolaron band. For refer-

ence, we note that the one-dimensional Holstein and
Fröhlich models host only one bipolaron band within Ω
of the ground-state energy (if UðδÞ ¼ 0) [32]. This is
precisely what is generically expected. For Holstein cou-
pling, the phonon-mediated effective interaction can be
modeled as an effective on site attraction −ΔE

P
i n̂i↑n̂i↓,

FIG. 1. Two-polaron phase diagram for UðδÞ ¼ 0 and Ω ¼ 3.
The diagram represents the evolution of the low-energy region of
the singlet sector with λ. Energies are in units of t. The
dimensionless effective coupling is λ ¼ 2g2=ðΩtÞ. The shaded
gray area shows the lower part of the two-polaron continuum. The
dark red region represents the lowest energy bipolaron band,
while the salmon region represents the higher energy bipolaron
band. These results were obtained with MA and are in good
agreement with VED results (blue circles) shown for the low-
energy bipolaron.

FIG. 2. Dependence of the effective mass of the low-energy
bipolaron on λ, forUðδÞ ¼ 0 andΩ ¼ 3.0.m0 ¼ 2me is twice the
free electron mass. The bipolaron’s effective mass is defined as
m� ¼ ½ð∂2EBPðKÞ=∂K2Þ−1�jK¼KGS

. The solid (dashed) lines are
VED (MA) results. Note that m� ∼ 2me in the strongly coupled
regime, λ > 1.
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where ΔE → 2g2=Ω as λ → ∞ [31,32]. In one dimension,
such effective on site attraction binds two fermions into a
singlet state, but there is only one bound state. The
existence of a second bipolaron state is thus very surprising
and points to a new mechanism behind pairing.
To understand this new physics, we first consider the

dispersion of the lowest energy bipolaron and its evolution
with increasing λ. This is shown in Fig. 3 for the positive
half of the Brillouin zone. The curves have been shifted for
ease of comparison (their absolute positions can be inferred
from Fig. 1). The inset shows the polaron dispersions for
the same coupling parameters.
At couplings λ ≤ 0.5 where only this bipolaron

band exists, the dispersion has the standard behavior,
being monotonically increasing with K. For larger λ, the
dispersion has a rather unusual shape, strongly peaked near
Ka ¼ π=2. This shape is highly suggestive of an avoided
crossing with a band located above (the second bipolaron
state that emerges at these couplings). This is confirmed
when we plot both bands for λ ¼ 2 in Fig. 4. The gap that
opens between the two bands varies only weakly with λ
(see Fig. 1). This behavior suggests the existence of two
bound states with different symmetries, coupled by a
λ-independent symmetry-breaking term.
Analytical arguments.—To unravel the pairing mecha-

nism and explain the origin of the two bipolaron states
and their avoided crossing, we consider the antiadiabatic
limit Ω ≫ t, g. We obtain analytical results by projecting
out the high-energy Hilbert subspaces with one or more
phonons [37]. Note that strong coupling λ ≫ 1 is included
within the antiadiabatic regime if t ≪ g ≪ Ω such that
g2 ≫ Ωt.

As discussed in Ref. [30], the effective Hamiltonian in
the single-particle sector is

ĥ1 ¼ −ϵ0
X

i;σ

n̂i;σ −
X

i;σ

ðtc†i;σciþ1;σ − t2c
†
i;σciþ2;σ þ H:c:Þ:

In addition to the nearest-neighbor bare particle hopping,
ĥ1 contains the polaron formation energy ϵ0 ¼ 4g2=Ω and a
dynamically generated next-nearest-neighbor hopping
t2 ¼ g2=Ω resulting from virtual emission and subsequent
absorption of a phonon by the particle, as it hops on and
off an intermediate site. This term becomes dominant for
large λ and explains the change in the shape of the
polaron dispersion EPðkÞ ¼ −ϵ0 − 2t cosðkaÞ þ
2t2 cosð2kaÞ observed in the inset of Fig. 3 (for detailed
discussions, see Ref. [30]).
In the singlet sector, we find that the effective two-

particle Hamiltonian is ĥ2;s¼ ĥ1þÛ0;2þÛ1. The additional
terms describe short-range phonon-mediated interactions
between the polarons. Specifically,

Û0;2¼−T0;0

X

i

½c†i−1;↑c†i−1;↓ci;↓ci;↑þH:c:�

þT0;2

X

i

½ðc†iþ1;↑c
†
i−1;↓−c†iþ1;↓c

†
i−1;↑Þci;↓ci;↑þH:c:�

describes nearest-neighbor pair-hopping of an on site singlet
with T0;0 ¼ ð4g2=ΩÞ and transitions between on site and
next-nearest-neighbor singlets with T0;2 ¼ ð2g2=ΩÞ. They
arise through emission and absorption of a phonon, e.g.,

c†i;↑c
†
i;↓j0i⇒

V̂e-ph

c†iþ1;↑c
†
i;↓b

†
iþ1j0i⇒

V̂e-ph

c†iþ1;↑c
†
iþ1;↓j0i allows one

FIG. 3. Dispersion EBPðKÞ − EBPð0Þ of the low-energy bipo-
laron, for various values of λ ¼ 2g2=ðΩtÞ atUðδÞ ¼ 0 andΩ ¼ 3.
(Inset) Polaron dispersion EPðkÞ − EPð0Þ for the same para-
meters. All energies are in units of t. In the main figure, solid lines
are VED results and dashed lines are MA results. Results in the
inset were obtained with MA and are in good agreement with
numerical results [30].

FIG. 4. Dispersion EBPðKÞ of both bipolaron bands, for
UðδÞ ¼ 0, Ω ¼ 3, and λ ¼ 2, showing an avoided crossing.
EBPðKÞ is in units of t. These are MA results. (Insets)
Low-energy bipolaron spatial correlation function CðδÞ ¼
hΨBPjð1=NÞPin̂i;↑n̂iþδ;↓jΨBPi at λ ¼ 2 for K ¼ 0 and K ¼
π=2a obtained with VED. In both cases, the electrons in the
bipolaron wave function are found with large probability to be up
to two sites apart.
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particle to hop by emitting a phonon, then the second particle
absorbs the phonon and hops to its partner’s new site. This is
one of the processes contributing to T0;0; all relevant
processes can be similarly inferred.
The other effective interaction term

Û1 ¼ þT1;1

X

iσ

½c†iþ1;σc
†
iþ2;−σciþ1;−σci;σ þ H:c:�

þ J
X

iσ

c†iþ1;σc
†
i;−σci;σciþ1;−σ

acts when the particles are on adjacent sites and describes
the pair hopping of a nearest-neighbor singlet with
T1;1 ¼ ð2g2=ΩÞ and an antiferromagnetic xy exchange with
J ¼ ð4g2=ΩÞ.
Note that none of these terms are of the density-density

type of interaction that is assumed to be the functional
form for phonon-mediated effective interactions. More
specifically, these terms can be written in the formP

k;k0;quðkþ k0; qÞc†kþq;↑c
†
k0−q;↓ck0;↓ck;↑ allowed by trans-

lational invariance. The interaction vertex uðkþ k0; qÞ
depends not only on the exchanged momentum q, as is
usually assumed to be the case, but also on the total
momentum of the interacting pair, kþ k0. It is therefore
important to understand the consequences of such inter-
actions, for example, how they affect the properties of
BCS- or Bose-Einstein-Condensate (BEC)-type supercon-
ductors. We leave such studies for future work.
The origin of the two different symmetry states leading to

the two bipolaron bands is now clear. First, let us set t ¼ 0.
In this case, the low-energy Hilbert subspace factorizes into
two sectors, with the particles being separated either by an
even or by an odd number of sites; the remaining terms in the
Hamiltonian do not mix these subspaces. To solve for bound
states, we calculate the two-particle propagator [38] and
check for discrete poles appearing below the continuum.
We find that Û0;2 and Û1 can lead to the appearance
of a bound state in their respective subspace. The
former has a monotonically increasing dispersion,
EevenðKÞ ¼ −2ϵ0 − 2T0;0 cosðKaÞ þ μðKÞ, where μðKÞ¼
(FevenðKÞ=2θðKÞ)−1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(FevenðKÞ=θðKÞ)2þ4ζðKÞ

p
, with

FevenðKÞ ¼ 2T0;0 cosðKaÞ, θðKÞ ¼ 1 − ð½f2ðKÞ�2=αðKÞÞ,
ζðKÞ ¼ αðKÞ=θðKÞ; f2ðKÞ ¼ 2t2 cosðKaÞ and αðKÞ¼
2(T0;2þf2ðKÞ)2. The latter has a monotonically
decreasing dispersion, EoddðKÞ¼−2ϵ0−Jþ2ðt2þT1;1Þ
cosðKaÞþκðKÞ, with κðKÞ ¼ (f2ðKÞ)2=(f2ðKÞþ
FoddðKÞ), where FoddðKÞ ¼ −J þ 2T1;1 cosðKaÞ. Note
that both these energies are controlled by the energy scale
g2=Ω, explaining why they evolve similarly with increasing
λ. When t is turned on, the nearest-neighbor hopping term
breaks this symmetry and leads to the avoided crossing and
hence the two bipolaron bands with unusual dispersions
shown in Fig. 4.

We now address the role of the Coulomb repulsionUðδÞ.
In Fig. 5, we display the critical value Uc above which
bipolarons dissociate into unbound polarons, for the Peierls
(solid lines) and Holstein (dashed line) models. Clearly, Uc
is much larger for Peierls bipolarons than for Holstein
bipolarons, even with a strong nearest-neighbor V ¼ 0.5U.
This is yet another qualitative difference between the two
models.
In the Holstein model, U directly competes with the on

site attraction ΔE mediated by phonons. A smooth cross-
over from an on site bipolaron to a weakly bound bipolaron
with the particles on neighboring sites is observed for
U ∼ ΔE, and a somewhat larger U suffices to dissociate the
bipolaron [31].
For the Peierls coupling, consider again the antiadiabatic

limit with t ¼ 0. Here, for V ¼ 0, a sufficiently largeU will
destabilize the bound state in the even sector, but will have
much less effect on the bound state of the odd sector.
Hybridization due to a finite t will then result in a low-
energy bipolaron similar to the bound state of the odd
sector. Consequently, one expects a stable bipolaron even
for large values of U. Moreover, for a sufficiently large U
value, one expects a transition to a bipolaron with ground
state momentum KGS ¼ π=a, favored by the odd bound
state. Indeed, we verified this behavior in the antiadiabatic
limit (not shown). Including a nearest-neighbor repulsion
V ∼U further suppresses Uc, as verified in Fig. 5.
Away from the antiadiabatic limit (see Fig. 5), we find

that the t-controlled mixing between even and odd bound

FIG. 5. Uc − λ stability diagram for the Peierls (solid lines) and
Holstein (dashed line) bipolarons at Ω ¼ 3. Uc is in units of t.
For the Peierls coupling, λ ¼ 2g2=ðΩtÞ, while for the Holstein
coupling, λ ¼ g2H=ð2ΩtÞ, where gH is the Holstein electron-
phonon coupling. These are VED results and reveal a qualitative
difference between the stability of the two types of bipolarons at
strong coupling λ > 1. The Peierls bipolaron remains more stable
than the Holstein bipolaron even in the presence of a screened
nearest-neighbor Coulomb repulsion V ¼ 0.2U and V ¼ 0.5U.
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states suffices to destabilize both states, at large enough
U > Uc. Still,Uc is larger than for the Holstein model even
for a very strong V=U ¼ 0.5.
The Peierls bipolarons are thus stable in a much wider

range of repulsive U than the Holstein bipolarons. This is a
direct consequence of the existence of the two bound states
with different symmetries, one of which is only weakly
affected by large U (at t ¼ 0).
Summary and discussion.—We have demonstrated the

existence of strongly bound yet light Peierls bipolarons,
stable against large values of the screened Coulomb
repulsion. The light bipolaron is a consequence of the
Peierls-type coupling, not of special circumstances like in
Ref. [24], making our conclusions applicable to a large
class of systems. We explained that pairing is mediated by
pair-hopping terms instead of the customary attractive
Hubbard-like terms. This unusual attraction binds two
low-energy bipolaron states, instead of one. As a result
of an avoided crossing, these Peierls bipolarons have
unique dispersions.
The binding mechanism poses questions about the nature

of superconductivity at finite carrier densities in higher
dimensions: light bipolarons should condense into a BEC-
type superconductor with high Tc. This should be relevant
to conjugated polymers [28,29,39], organic semiconduc-
tors [40–43], some oxides [44,45], and engineered quantum
simulators [46–51]. Recent work claims a record Tc for
superconductivity in doped organic p-terphenyl molecules
[52,53], where the Peierls coupling is important, and
attributes it to a possible bipolaronic mechanism [52].
Similarly, our work may be relevant to understanding
electron-phonon driven superconductivity in SrTiO3 [54],
especially given its recently uncovered one-dimensional
nature [55], in magic-angle graphene [56], and in layered
MoS2 [57].
To validate our proposed new pathway to high-

temperature superconductivity, a detailed understanding
of Peierls couplings and their interplay with Coulomb
repulsion at finite carrier concentrations is required (see
[58,59] for recent studies).
All these considerations indicate that the issue of

phonon-mediated high-temperature superconductivity must
be revisited.
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