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Fractons from frustration in hole-doped antiferromagnets
John Sous 1✉ and Michael Pretko 2

Recent theoretical research on tensor gauge theories led to the discovery of an exotic type of quasiparticles, dubbed fractons, that
obey both charge and dipole conservation. Here we describe physical implementation of dipole conservation laws in realistic
systems. We show that fractons find a natural realization in hole-doped antiferromagnets. There, individual holes are largely
immobile, while dipolar hole pairs move with ease. First, we demonstrate a broad parametric regime of fracton behavior in hole-
doped two-dimensional Ising antiferromagnets viable through five orders in perturbation theory. We then specialize to the case of
holes confined to one dimension in an otherwise two-dimensional antiferromagnetic background, which can be realized via the
application of external fields in experiments, and prove ideal fracton behavior. We explicitly map the model onto a fracton
Hamiltonian featuring conservation of dipole moment. Manifestations of fractonicity in these systems include gravitational
clustering of holes. We also discuss diagnostics of fracton behavior, which we argue is borne out in existing experimental results.
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INTRODUCTION
The concept of exotic emergent quasiparticles has played a
prominent role in the theory of strongly correlated quantum
many-body systems for several decades, appearing in contexts
ranging from fractional quantum Hall systems1 to quantum spin
liquids2. Recently, an exotic type of emergent quasiparticle has
been proposed: Fracton particles that exhibit an unusual form of
mobility. An individual fracton is strictly locked in place, while
bound states of paired fractons are free to move around the
system3–7. Fractons have drawn immense excitement partly
because of their promise as a potential platform for fault-
tolerant quantum computation and robust quantum information
storage4,8,9. But even more, their fundamental features are
interesting in their own right, leading to deep connections with
a wide variety of concepts, such as tensor gauge theories7,10,11,
gravity12,13, and localization3,14–19. We refer the reader to a review
article20 and selected literature21–30 for further details.
The unusual fracton mobility constraints can be conveniently

encoded as charge and dipole conservation laws. While nature
readily supplements charge symmetry in a plethora of physical
systems, the realization of dipolar symmetry in realistic systems
represents a challenge. The ramifications on physical behavior of
this aberrant symmetry constraint partially accounts for the
widespread research activity on fractons. Yet only few proposals
for their realization in concrete physical systems exist. One
promising direction proposed fractons realized as disclination
defects of two-dimensional (2D) crystals, with striking manifesta-
tions, such as glide constraint on dislocations31–33. Unfortunately,
the study of individual fractons in these systems is unfeasible due
to the large energy cost required to separate disclinations. Another
significant push towards making contact with experiment involves
engineering realistic fracton spin-liquid models34,35. However, as of
now, no specific material candidates for a fracton spin liquid exist. It
may also be possible to impose closely related conservation laws in
engineered cold-atom systems via application of a linear poten-
tial36,37. Emergence of fracton physics in these systems, however,
remain to be seen. It is therefore of paramount importance to
identify realistic platforms for fracton physics, where individual

fractons can be probed and analyzed, permitting a controllable
study of few- to many-body behavior of fractonic systems.
In this paper, we identify one such platform, and explain that

hole-doped antiferromagnets (AFMs) realize fracton physics at the
single-, few-, and many-particle levels. While the mobility restric-
tions of fractons may seem exotic at first glance, strikingly similar
phenomenology is found in the simple, familiar physical setting of
holes doped into an Ising AFM in dimensions greater than one:
Motion of a single hole through the antiferromagnetic background
is inhibited by creation of magnon (spin-flip) excitations38–42, see
Fig. 1a. Meanwhile, a bound pair of holes can easily move through
the system, in a manifestation of fracton physics, as shown in Fig.
1b. In a fully 2D AFM, this fracton behavior is only approximate due
to higher-order Trugman loops that induce mobility of a single
hole38. However, since holes move only at sixth order, while dipolar
bound states move at second order, the system features a wide
parametric regime of fracton behavior.
While the 2D AFM exhibits only approximate fracton behavior,

we next investigate a sharp realization of fracton behavior,
specializing to the case of holes confined to one dimension of an
otherwise 2D antiferromagnetic background, a setup that can be
achieved in experiments43. In this system, we show that Trugman
loops are entirely eliminated and the system exhibits perfect
fracton behavior to all orders. By integrating out the magnons, we
explicitly derive an effective fracton Hamiltonian for the holes,
characterized by conservation of dipole moment.
The manifestation of fracton physics in these systems, whether

exact or approximate, has important consequences, some of
which have already been borne out in existing experimental
results. Most notably, fractons exhibit a universal short-ranged
“gravitational” attraction that can cause them to cluster
together12. This gravitational attraction coincides with the
magnon-mediated interaction between holes, which has been
identified as a potential pairing “glue” in superconductivity44,45. A
finite density of holes doped into an AFM experience phase
separation46–49, in agreement with clustering and emulsion
physics encountered in fracton theories24. To elucidate the fracton
nature of the underlying excitations in these systems, we identify
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a signature in the pair correlation function as a diagnostic of
fracton behavior. Our results and calculations can be appropriately
extended to more general classes of systems described by boson-
affected hopping.

RESULTS
Fractons in hole-doped AFMs
2D square antiferromagnets. We consider a small number of
holes doped into a 2D square Ising AFM described by the
Hamiltonian HIsing ¼ J

P
hi;jiS

z
i S

z
j , J > 0. The undoped parent ground

state of such a system is a classical Néel state: ΨGSj i ¼
Πi2Ac

y
i;"Πj2Bc

y
j;# 0j i with spins on sublattice A pointing up, and spins

on sublattice B pointing down. Here, a cyσ operator creates a
fermion with spin σ= {↑, ↓}. A doped hole moves through motion
of a spin particle to the empty site. To very good approximation,
holes move only via nearest-neighbor hopping.
The motion of the hole occurs as a result of the hopping of a

particle whose spin becomes either perfectly aligned or mis-
aligned with respect to the antiferromagnetic environment. We
can regard a misaligned spin as a bosonic defect, i.e. a magnon,
with a creation operator:

dyi ¼
σ�
i ; if i 2 A;

σþ
i ; if i 2 B;

�
(1)

where σ± is the spin-12 raising/lowering Pauli matrix. It is important
to note that the hole motion conserves the total magnetization (as
well as the charge) of the doped system. One can therefore
associate the removal of a fermion of spin σ with the creation of a
hole with spin −σ, as either amounts to a total net change of the
magnetization of the entire system by −σ. We thus define the hole
operators as

hyi;�σ ¼ ci;σ; σ ¼ "; if i 2 A;

#; if i 2 B:

�
(2)

When the hole moves it either creates a magnon at the site of its
departure (displaced oppositely oriented spin) or absorbs a
magnon at the site of its arrival (heals a spin misalignment). This
gives a Hamiltonian50:

H ¼ P �t
X
hi;ji;σ

hyj;σhi;σðdyi þ djÞ þ h:c:
h i2

4
3
5P þ HIsing: (3)

Here 〈.〉 refers to nearest neighbors, and the Hamiltonian
respects a no-double occupancy constraint implemented via a
projector P, so that each site has either a hole or a spin:P

σh
y
i;σhi;σ þ dyi di þ did

y
i ¼ 1.

Consider first a single hole doped into the 2D AFM. The σ label
for the hole flavor is irrelevant and simply drops. The hole moves
through the hopping of a fermion to the hole’s original site. One
must ask how the coupling of the hole hopping to magnons
affects its motion. To address this question, we expand about
the limit of a static hole in orders of t/J. The leading-order
process is one in which the hole hops creating a misaligned spin
or a magnon at the site of its departure, and then hops back to
absorb the magnon, healing the background. Continuing with a
detailed analysis of this perturbative expansion reveals that the
hole creates a string of spin flips as it moves, only to retrace
them back to its original site, i.e. the hole is localized to its
original site by the energetically costly strings. Deviations from
this picture occur at an order sixth in the expansion,
corresponding to the motion of the hole in closed loops, known
as Trugman loops38, in which case it heals the string terminating
two sites apart from its original site. This analysis asserts that a
single hole is localized through five orders in perturbation
theory.
Consider now two holes of different spin flavor doped into the

2D AFM. Holes exchange magnons, and thus interact. As before,
we study the behavior via a perturbative expansion in t/J. To
leading order, one hole moves and creates a magnon at its
departure site, which is absorbed either by the second hole of
opposite flavor, mediating the motion of the two-hole state or
by the first hole, restoring the original configuration. Since a
hole cannot be simultaneously at the same site as a magnon,
holes communicate only via strings. Thus, to arbitrary order, we
conclude that two holes are bound by a string and their motion
is described by an effective pair-hopping interaction that moves
the pair as a whole while preserving their relative distance.
We ascribe an effective charge degree of freedom to the

magnetic polaron’s spin: ρ= h†σzh, where σz is the Pauli matrix
in the spin flavor subspace of the fermion with eigenvalues σ=
±1. A single “charge”, i.e. a polaron, cannot move in isolation,
through five orders in perturbation theory. Two opposite
charges, i.e. within a bipolaron, move together preserving their
relative separation, and whence the bound state dipole
moment: D ¼ P

iðhyi σz
i hiÞxi . This theory manifestly gives rise to

a dipole conservation law,
P

i ρixi ¼ constant, i.e. a parametric
regime of fractonic behavior, only violated at the sixth order in
perturbation theory when a single hole becomes mobile.

Mixed-dimensional AFMs. One can achieve ideal fracton behavior
in an intermediate setup between one and two dimensions, in so-
called “mixed-dimensional” AFMs. Applying a strong gradient
potential V(y) along the y-direction (taken to be one of the
principal axes of the square lattice) restricts the hole to a line
along the x-direction43. This eliminates the undesirable motion of
the hole along closed loops, while preserving spin frustration
induced by hole motion, the mechanism behind string-mediated
localization of the hole.
In this mixed dimensionality limit, a single hole always creates

magnons first before absorbing them in the reverse order. This
simplifies the equation of motion for the one-hole propagator
G1h(k, ω), see “Methods” and Supplementary Note 1. We find for
the lowest pole G1hðk;ωÞ � ½ω� EpðkÞ��1, where Ep(k) is the
energy dispersion of a magnetic polaron formed as the back-
ground fluctuations dress the hole. We find Ep(k) to be
dispersionless, reflecting the localization of the hole at its original
position by string excitations. Insight into this process can be
gained as follows. To leading (second) order, the polaron energy is
Ep(k)=−4t2/3J, reflecting a process in which the hole hops from
site ix to ix ± 1 via one application of the hoping operator with
amplitude t, creating a magnon with energy 3J/2 at ix ± 1, which it
then absorbs and moves back to ix. The extra factor of 2 accounts
for the two possible directions of hops in the x-direction. The next

Fig. 1 Fractons in hole-doped antiferromagnets. a Motion of a
single hole in a (mixed-dimensional) Néel antiferromagnet frustrates
the antiferromagnetic bonds. b Two holes in a dipolar bound state
move without breaking any antiferromagnetic bonds.
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correction goes as ~t4/J3. Importantly, there is no possible way for
the hole to end up at a site different from its original one,
reflecting the fact that the hole always retraces its path back to
the origin.
Consider now the two-hole propagator G2h(K, ω) in the σzTotal ¼

0 sector. Since one hole of spin σ always first emits a string of
magnons before they are absorbed by the second hole of spin
−σ, this propagator is also computed exactly self-consistently, see
Supplementary Note 1. This interaction binds the two magnetic
polarons into a bipolaron via a string, with a dispersion: EBP(K)=
−∑δ=12(2tδ)cosðδKÞ, where 2tδ is the amplitude of hopping of the
composite bipolaron with momentum K= kσ+ k−σδ sites and the
discrete sum over δ truncates at some order in the expansion. To
leading order, the bipolaron dispersion is −2(2t1)cosðKÞ and 2t1=
4t2/3J. This dispersion reflects a magnon-mediated pair-hopping
interaction that moves a pair of holes as a whole:
hyðix ;iyÞh

y
ðixþ1;iyÞ 0j i ! hyðixþ1;iyÞh

y
ðixþ2;iyÞ 0j i/ hyðix�1;iyÞh

y
ðix ;iyÞ 0j i; here 0j i �

ΨGSj i is the vacuum of holes. Note that the relative distance
between the holes in the bipolaron always remain conserved.
We can calculate the two-particle behavior to arbitrary order,

finding the effective Hamiltonian governing the one- and two-
hole physics, after integrating out the bosons, to be

H ¼ �ϵ0
P
i;σ

hyi;σhi;σ

� P
i;δ;σ

tδ hyiþδ;σh
y
iþδþ1;�σ þ hyi�δ;σh

y
i�δþ1;�σ

� �
hiþ1;�σhi;σ þ � � �;

(4)

where ϵ0 is the polaron formation energy (discussed above) that
gives rise to a simple shift in the particle’s energy, and the ⋅ ⋅ ⋅
refers to other two-body density–density interactions. Here i
refers to the site index along a line in x. Importantly, this
Hamiltonian does not generate any single-particle motion, but
induces two-particle dynamics that preserves the relative
distance between the two different polaron flavors, i.e. the two
fractons form a composite particle (dipole) with a fixed radius. As
such, the dipole moment is strictly conserved, [H, ρ]= [H, D]= 0,
representing perfect fractonicity.

Manifestations of fracton behavior
A hallmark of fracton behavior is the presence of a universal
attraction between fractons that can be regarded as an emergent
gravitational force12, which we show leaves its signatures in hole-
doped AFMs. This attraction arises as a consequence of the fact
that fractons are more mobile in the vicinity of other ones.
Consider a particle with an effective mass m(r), where r is the
distance away from a second particle in the system, taken to be
fixed. Neglecting inter-particle interactions, the fracton’s velocity is

v ¼
ffiffiffiffiffiffiffi
2E
mðrÞ

q
: The velocity of the particle increases at small inter-

particle separation and decreases otherwise. This attraction holds
for both perfect and approximate fracton behavior, so long as m(r)
increases as particles move apart.
This effective attraction also continues to hold even in the

presence of a sufficiently weak short-range repulsion V(r)= V0e
−r/a

between the holes, where a is the lattice scale (V0 is of order t
2/J,

corresponding to one of the “. . .” terms of Eq. (4)). Then, the

velocity of a particle becomes v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE�VðrÞÞ

mðrÞ
q

. Let us consider a

generic case for the behavior of m(r) with distance: We take its
decay at short distances to be short-ranged, i.e. m(r)=m0(1−
ηe−r/a) with η < 1 sets the energy scale of the dynamics of the
fracton. (Note that we let V(r) and m(r) range similarly, which is a
useful simplifying assumption, though not fundamental to the
analysis.) Microscopically, the gravitational mass corresponds to
the inverse of the hopping. Since the hole hopping (in 2D AFMs)
~t6/J5, while the partner-induced hopping ~t2/J, we can extract
m0 ~ J5/t6 and η/m0 ~ t2/J→ η ~ (J/t)4. The velocity of a particle is

then:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE � V0e�r=aÞ
m0ð1� ηe�r=aÞ

s
�

ffiffiffiffiffiffi
2E
m0

r
1þ 1

2
η� V0

E

� �
e�r=a

� �
: (5)

The last step represents the leading behavior at large r, i.e., bigger
than a few lattice spacings. As long as V0 remains sufficiently weak,
such that V0 < ηE, the effective force between fractons will remain
attractive for the majority of states. Since η ~ (J/t)4 while V0 ~ t2/J,
this condition will hold for nearly all states. (This condition will fail
for certain configurations with sufficiently small E. However, such
states typically involve widely separated particles that do not
interact significantly anyway.) We therefore see that particles
governed by approximate fracton behavior will still exhibit near-
universal attraction, even in the presence of a small short-range
repulsion.
As a consequence, holes doped into 2D and mixed-

dimensional AFMs phase separate at finite hole concentra-
tions46–49, reflective of the gravitational force between fractons.
To see this, we note that in the mixed-dimensional limit, the
model can be mapped onto a fermionic model by mapping a pair
onto a spinless fermion and a spin onto an empty site49. The
result is H ¼ �t2

P
iðf yi f iþ1 þ h:c:Þ � J

4

P
ininiþ1, and i runs over

sites of a lattice of reduced size that results from the mapping.
Here t2 is an effective nearest-neighbor pair (f particle) hopping
that accounts for most of the pair’s kinetic energy, neglecting
beyond-nearest-neighbor hopping. This Hamiltonian demon-
strates competition between the hopping of bound pairs (t2
term) and their interaction (J/4 term), which is attractive due to
the antiferromagnetic correlations in the background that favor
spin clusters of larger size so as to increase the antiferromagnetic
energy. Thus, holes favor clustering together. Importantly, the
fractonic t2 pair hopping alone is sufficient to induce an emulsion
of dipolar pairs and single fractons (unpaired holes) at finite
fracton “charge” densities (magnetizations), see Fig. 2a).

DISCUSSION
Symmetry-protected fracton (SPF) order
Topological fracton order found in special three-dimensional spin
models such as the Chamon model3, X-cube model5, and Haah’s
code4 persists against arbitrary local perturbations that are small
compared to the gap regardless of symmetry considerations. In
contrast, our fracton model displays physics robust to arbitrary
symmetry-preserving perturbations small in the scale of the gap, as
we detail below. This relationship parallels the one that exists
between topological order and symmetry-protected topological
phases; the former being robust against any perturbation while
the latter survives only symmetry-respecting perturbations. We
can therefore regard our model of fractons in the hole-doped Ising
AFM as an example of SPF order28–30. Specifically, any

Fig. 2 Manifestations of fracton conservation laws in antiferro-
magnets. a The gravitational behavior of fractons manifests as
phase separation of holes. b Conservation of dipole moment
D manifests as a delta function in the pair correlation function:
C(d) ~ δ(d− D). d is in the units of the lattice constant a.
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perturbation that preserves Sz conservation will still yield fractons
in the hole-doped AFM, while symmetry-breaking terms would
promote free hole motion, destroying fractonicity. Essentially, the
ordinary global U(1) symmetry of Sz conservation on the
microscopic spins imposes dipole conservation D on the emergent
fractons.
The idea of SPF order might serve as a guiding principle to

relate symmetries to fracton phenomenology. For example,
arbitrary U(1) symmetry-preserving terms added to the Hamilto-
nian would not violate dipole conservation, which in turn
dominates the characteristics of the system including its restricted
dynamics and the emulsion fracton physics at finite hole
concentrations. In essence, this might allow us to investigate
systems previously unexplored, and deduce their phenomenology
on the basis of symmetry. In the current work, the U(1) symmetry
implies single hole localization, dipolar pairs, and phase separa-
tion, all of which are understood as a result of emergence of
fractons protected by the underlying U(1) symmetry.

Experimental relevance
Antiferromagnetic materials51 including dysprosium phos-
phates52,53, dysprosium aluminum garnets54, rubidium cobalt
fluorides55–58, the quasi-one-dimensional κ-type organic salts59,60,
and rare-earth pyrogermanates61 serve as realistic solid-state
setups to realize fractons upon doping. Rydberg-atom arrays62–64,
trapped ions65,66, polar molecules67,68, and ultracold atoms in
optical lattices69–71 present alternative avenues to simulate doped
Ising AFMs. In two (and three) dimensions, fracton behavior is
approximate. An external field can be utilized to implement the
mixed-dimensional limit for which fracton behavior becomes exact.
Here, the potential gradient V >> t manifests as an energetically
high barrier for hole tunneling in the perpendicular direction, and
remains robust on timescales � ðt2=VÞ�1. Nano/optical photodop-
ing techniques applied to antiferromagnetic Mott insulators72

serve to engineer fractons and dipoles with long lifetimes73,74,
because the antiferromagnetic background functions perfectly to
absorb the excess kinetic energy of the photodoped carriers on
timescales of the order of few electronic hops75,76.
We now discuss the stability of fracton behavior to perturba-

tions beyond the Ising limit, namely a Heisenberg exchange J⊥.
While the first application of the frustration-inducing motion of
the hole creates a spin misalignment in the background (a domain
wall where two neighboring spins align in the same direction),
nearest-neighbor spin exchange can lift this misalignment only
after a subsequent hop of the hole. This is because after the
second hop the second displaced spin becomes nearest neighbor
to the oppositely oriented first one, and only then the two can flip
flop, healing the background. Thus, to leading order in t/J the
emergent fractonicity remains stable against weak and possibly
moderate J⊥, and deviations shall occur on timescales � ðt4=J3Þ�1

.
Interferometric and spectroscopic studies of lightly doped Néel

AFMs serve as probes of fractons and dipoles. Absorption spectra
and pair correlation functions together represent measurements
that elucidate clear signatures of fractonic behavior: Since a
fracton has no dispersion, the fracton peak, the lowest pole, in the
one-body spectral function Aðk;ωÞ ¼ � 1

π G1hðk;ωÞ will exhibit no
dependence on k; a sharper diagnostic is to probe the distance
between the fractons constituting a dipole: The perfect locking of
the two particles within a dipole will manifest in the real-space
magnon-integrated density–density correlation function: CðdÞ ¼
Trmagnonsh 1

N

P
i n̂i n̂iþdi: Here, N is the number of lattice sites. Since,

for any given two-particle state, the particles are separated by a
constant distance D (the dipole moment), this correlation function
will be nonzero only for d = D, i.e. C(d) ~ δ(d− D), as shown in Fig.
2b). In contrast, a two-particle state in a system without dipole
conservation would feature a more generic distribution of this
correlation function, without such a sharp peak. Note that for

contexts in which fracton behavior is approximate, the
density–density correlation function will feature a rounded, yet
still prominent, peak in C(d) near d= 1. We wish to note that
experiments studying magnetic polarons already show indications
of the fracton phenomenon, including their restricted mobility
and the string-mediated binding of dipoles44,77–80.
Identifying fractons in antiferromagnets paves the way to

observing their peculiar properties in transport. It was recently
realized that idealized fracton models exhibit anomalous non-
thermalizing behavior despite the absence of quenched dis-
order15. For certain initial conditions, the system fails to thermalize
even at asymptotically long times, analogous to the behavior of
quantum many-body scars16,81. Our analysis suggests that this
behavior might emerge in hole-doped antiferromagnets for initial
states respecting fractonic conservation. This possibility is
supported by numerics of fractonic models17,82. A versatile
experimental platform like the one we propose might allow to
probe exotic behavior such as the unusual late-time oscillations in
certain operator quantities, speculated to occur in fracton systems
as a consequence of their connection to quantum many-body
scars16. Fractons in AFMs would also allow the exploration of
unusual many-fracton phases of matter, with properties qualita-
tively different from usual electronic phases24, such as fracton
microemulsions composed of small-scale clusters emulsed in a
phase dominated by long-range repulsion.

Further remarks
We have identified a concrete physical realization of fractons in
hole-doped Ising AFMs. While we have focused throughout on the
example of the square lattice, our results apply to all bipartite
lattices. The concept of distortion-controlled motion of particles
discussed here arises in various contexts and may lead to fracton
behavior in matter-gauge field19 and electron–phonon83,84

coupled systems.
Coulomb repulsion modeled as an effective V plays an important

role in materials. We expect fracton behavior to survive: V simply
shifts the nearest-neighbor pair’s energy EBP to EBP+ V, which—in
a completely isolated system—will be infinitely stable, since there
exists no mechansim to couple this state to two free holes. At
higher temperatures above the hopping scale, i.e. in the classical
regime, this model exhibits a spatially heterogeneous glass phase
with regions of high and low mobility, and with characteristics
reminiscent of structural glasses85. Thus, this model in presence of
V gives rise to constrained dynamics in the quantum limit possibly
leading to non-thermal states, and slow glassy dynamics in the
classical limit, opening a door to investigating classical-quantum
crossover in non-ergodic phenomena.
Looking ahead, one-dimensional pair-hopping models related

to Eq. (4) host topological edge modes with an unusual gapless
bulk86. Understanding the topological character of our con-
strained fractonic pair-hopping model may serve to expose
connections between topological and fractonic behavior. Such a
task might allow understanding of Haldane edge modes in hole-
doped AFMs87 in light of fracton symmetries. Extensions to doped
2D frustrated AFMs may realize more exotic types of fractons with
mobility constraints extended to a line or a plane. Our work sets
the stage to explore these questions.

METHODS
Self-consistent approach to the propagators
The equation of motion for the one-hole propagator G1hðk;ωÞ ¼
ΨGSh jhkĜðωÞhyk ΨGSj i and for the two-hole propagator (in the σzTotal ¼ 0
sector) G2hðK;ωÞ ¼ ΨGSh jhkσhk�σ

ĜðωÞhyk�σ
hykσ ΨGSj i (here K= kσ+ k−σ) in

the mixed-dimensional AFM are exactly solvable in the self-consistent non-
crossing scheme. Here, ĜðωÞ ¼ ½ω� H��1, ΨGSj i represents the Ising AFM,
and H is in the mixed-dimensional limit. Since one hole of spin σ always
first emits a string of magnons before it absorbs them on return its original
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site or before they are absorbed by the second hole of spin −σ, all crossed
boson lines vanish, making the non-crossing scheme exact. A discrete pole
in G1h(k, ω) and similarly in G2h(K, ω) signals the formation of a bound state:
A magnetic polaron of dispersion Ep(k) in the one-hole case, and a
magnetic bipolaron with a dispersion EBP(K) in the two-hole case. See the
Supplementary Note 1 for more details.
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Supplementary Information

Supplementary Note 1

We compute the one- and two-hole propagators approximately for the case of two-dimensional antiferromagnets and
exactly for the mixed-dimensional case. Here we provide a brief overview of the approach in the mixed-dimensional
case.
One-hole propagator: The equation of motion for the one-hole propagator G1h(k,ω) = ⟨ΨGS∣hkĜ(ω)h†

k ∣ΨGS⟩ is exactly
solvable in the self-consistent non-crossing scheme since crossing diagrams identically vanish as the hole must always
retrace its path back to the origin. Here, Ĝ(ω) = [ω − H]−1, ∣ΨGS⟩ represents the Ising AFM, and H is in the
mixed-dimensional limit. One then finds

G1h(k,ω) = { [G0
1h(k,ω)]

−1 −Σ(k,ω)}
−1

, (1)

where G0
1h(k,ω) = ω−1 is the static hole propagator governed by H0 ≡Ht=0 and the self-energy

Σ(k,ω) = 2t2F1h,1b(k,ω − 3J/2),

with F1h,1b(k,ω − 3J/2) = { [G0
1h(k,ω)]

−1 −ΣF (k,ω)}
−1

(2)

is a generalized hole–one-boson propagator that is solved self-consistently:

ΣF (k,ω) = t2F1h,1b(k,ω − J). (3)

Note the different t2 factors and shifts in ω in the definitions of the self-energies. These reflect the following. The
first magnon created by the hole has an energy 3J/2, corresponding to the breaking of three antiferromagnetic bonds,
and can be generated in two different directions along x. However, subsequent magnons each cost an energy J ,
corresponding to breaking two bonds, and can only be generated unidirectionally. As such, all processes involving
more than a single magnon are summed up to obtain F1h,1b, from which one finds G1h(k,ω). This approach gives for
the lowest pole G1h(k,ω) ∼ [ω −Ep(k)]−1, where Ep(k) is the energy dispersion of a magnetic polaron formed of the
hole dressed by magnons.

Two-hole propagator: The two-hole propagator in the σzTotal = 0 sector G2h(K,ω) = ⟨ΨGS∣hkσhk−σ Ĝ(ω)h†
k−σ

h†
kσ

∣ΨGS⟩
is also found exactly via a non-crossing self-consistent approach. Here, K = kσ + k−σ is the total momentum of the
pair. To see the exactness of the non-crossing scheme for two-hole states, note that one hole of spin σ always first
emits a string of magnons before they are absorbed by the second hole of spin −σ; this represents the only possible
magnon-mediated interaction between the holes, and thus all crossed boson lines connecting the two fermion lines
vanish. One then sums all diagrams self-consistently (all crossed boson lines vanish) to find the T -matrix describing
the interaction between two holes. A discrete pole in G2h(K,ω) signals the formation of a bound state of two holes,
with a dispersion EBP(K). Note that such a bound state has an infinite lifetime even if it is not the lowest energy
state, since there are no matrix elements to couple the bound pair to a configuration of two isolated particles.


