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Rydberg impurity in a Fermi gas: Quantum statistics and rotational blockade

John Sous ,1,2,*,† H. R. Sadeghpour,1 T. C. Killian ,3 Eugene Demler,4 and Richard Schmidt 5,6,†

1ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
2Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

3Department of Physics, and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, Texas 77251, USA
4Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

5Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
6Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany

(Received 2 July 2019; revised manuscript received 31 December 2019; accepted 6 January 2020;
published 9 April 2020)

We consider the quench of an atomic impurity via a single Rydberg excitation in a degenerate Fermi gas. The
Rydberg interaction with the background gas particles induces an ultralong-range potential that binds particles to
form dimers, trimers, tetramers, etc. Such oligomeric molecules were recently observed in atomic Bose-Einstein
condensates. Understanding the effects of a correlated background on molecule formation, absent in bosonic
baths, is crucial to explain ongoing experiments with Fermi gases. In this work we demonstrate with a functional
determinant approach that quantum statistics and fluctuations have clear observable consequences. We show that
the occupation of molecular states is predicated on the Fermi statistics, which suppresses molecular formation in
an emergent molecular shell structure. At high gas densities this leads to spectral narrowing, which can serve as
a probe of the quantum gas thermodynamic properties. Rydberg excitations in Fermi gases go beyond traditional
impurity problems, creating an opportunity for studies of mesoscopic interactions in synthetic quantum matter.
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I. INTRODUCTION

The study of bound complexes composed of a large num-
ber of particles lies at the heart of physics, chemistry, and
biology. Examples include DNA formed from nucleotides,
complex molecules composed of atoms, and nuclei comprised
of neutrons and protons. Our understanding of these complex
systems emerges from idealized models, which are yet suf-
ficiently complex to contain the relevant physics. A prime
example is shell models, which underlie our description of
the structure of atoms [1], nuclei [2], and quantum dots [3].
A key ingredient in shell models is the quantum statistics
of the constituent particles, which is fermionic for electrons,
protons, and neutrons leading to Pauli exclusion and the
concept of filled shells.

In nature, large bound complexes are often embedded in
environments and reside in a state far from equilibrium. This
presents an outstanding challenge for experiment and theory
as now an understanding of the interplay of dynamics and
quantum statistics in bound structures becomes essential to
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explain the evolution through the hierarchy of more complex
structures as system size increases.

Here we show that a Rydberg impurity interacting with
a background atomic gas [4–6] leads to the formation of a
molecular shell structure in the quantum regime, where the
thermal de Broglie wavelength λT becomes comparable to the
range of the impurity-background gas potential (see Fig. 1).
In contrast to other shell models, particles can be bosonic or
fermionic, so the role of quantum statistics can be explored.
The shell structure we describe here for fermions is akin
to the nuclear shell model and arises because at low gas
density few-body bound molecular states must obey the Pauli
exclusion, leading to a sequential filling of molecular shells.
At higher densities, Rydberg excitations in a Fermi gas are an
example for systems where quantum mechanics and statistics
can appear in surprising places: The atoms bound in the
molecular shells are localized on a length scale that is much
smaller than the inverse Fermi momentum. One might thus
expect that quantum statistics should be irrelevant. We find
that this is not the case. Using an extension of the functional
determinant approach [7], we monitor the time evolution of
the Fermi gas, subject to a sudden Rydberg excitation, in
a superposition state of antisymmetrized many-body wave
functions. We show that an intricate interplay of wave function
overlaps and quantum statistics leads to physics similar to the
Anderson orthogonality catastrophe [8,9] with an observable
Fermi suppression of spectral density containing the direct
signature of many-body dressing.

The following are the salient features of our results.
(i) Mesoscopic Pauli exclusion: rotational blockade and

inhibition of molecule formation. Atoms bound in the Rydberg
potential occupy states that can be labeled by vibrational
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FIG. 1. Occupation of a shell structure induced by a Rydberg
excitation in a Fermi sea. The Rydberg electron (brown sphere)
of the impurity atom (red ion core) induces a molecular potential
(dark brown) for the host atoms whose range can be tuned by the
principal quantum number n. As illustrated in the close-up to the
right (blue bubble), the potential supports bound molecular states
in various angular momentum channels that are localized in the
outermost potential well (not to scale). These bound states can be
populated by the atoms initially occupying the single-particle states
of the unperturbed Fermi sea up to the Fermi energy εF (green
shading). Since angular momentum is conserved in the scattering
with the spherically symmetric Rydberg excitation, fermions must
overcome the rotational barrier to occupy the s, p, and d shells of the
Rydberg atom leading to a shell structure whose occupation (shown
in the inset) is determined by a Pauli-enforced Rydberg rotational
blockade.

and rotational quantum numbers k, l , and m. While an
arbitrary number of bosons can occupy each of these levels,
for fermions Pauli statistics manifests in the filling of a shell
structure. Upon filling the s (l = 0) shell, the next three
atoms are placed in the p (l = 1) shell and so on. We find
that the occupation of the molecular shells from atoms in a
low-density Fermi gas is rotationally blocked due to Pauli
exclusion. This leads to a distinct response of Fermi and
Bose gases and a suppression of the formation of fermionic,
ultralong-range Rydberg molecules.

(ii) Fermi compression: many-body spectral narrowing and
probe of macroscopic quantities. At high gas densities, we find
that the many-body spectral density is measurably narrower
for fermions than for bosons. In Bose gases [6,10,11], it was
found that the large extent of the impurity potential and dress-
ing with bound states leads to a superpolaronic response. A
key signature of the superpolaron response is a distribution of
absorption peaks of significant weight as opposed to a single
dominant polaronic peak. While for Bose gases the spectral
response assumes a Gaussian profile that can be understood in
terms of independent modes, for fermions such a description
breaks down. Instead, we find that the competition between
Fermi pressure and bound-state formation leads to an observ-
able compression of the superpolaron absorption spectrum
when compared to the response in a dense bosonic environ-
ment. Being tied to the local density fluctuations in the envi-
ronment, this spectral compression can serve as a local in situ
probe of pressure and compressibility in quantum gases. Since
the Pauli pressure is the thermodynamic manifestation of the
Fermi correlation hole, Rydberg impurities thus present a

controllable tool to study the origin of thermodynamic prop-
erties on the microscopic scale.

The paper is organized as follows. In Sec. II we discuss
the physical setup of a Rydberg excitation in an ultracold
Fermi gas and introduce the relevant microscopic model. In
Sec. III we introduce a functional determinant approach that
captures the quench dynamics of the Fermi sea in response
to the sudden introduction of a gigantic impurity excitation.
Section IV demonstrates how a shell structure emerges at var-
ious densities. There we show that a Pauli-enforced Rydberg
rotational blockade leads to suppressed molecular formation
at low densities and a compressed superpolaronic excitation
at higher densities. We relate the predicted phenomena to the
orthogonality catastrophe in Sec. V. We conclude the article
in Sec. VI by outlining experimental protocols to measure the
predicted phenomena and providing an outlook.

II. RYDBERG IMPURITY IN A FERMI SEA

We consider a single Rydberg atom suddenly immersed
in a degenerate Fermi gas of spin-polarized ultracold atoms
at temperature T and homogeneous particle density ρ. We
limit our theory to the T = 0 ensemble, in which the initial
state of the many-body environment is given by |�FS〉 =∏

|k|�kF
ĉ†

k|0〉, where fermions of mass m, described by cre-

ation operators ĉ†
k, fill single-particle orbitals of momentum k

up to the Fermi momentum kF.

A. Rydberg impurity-bath interaction

Upon excitation to a state ψe(r) of principal number n,
the Rydberg electron interacts with the ground-state atoms
in its environment. The frequent scattering of the low-energy
Rydberg electron from the gas perturber atoms was first
described by Fermi [12] and leads to a Born-Oppenheimer
interaction potential between the Rydberg and ground-state
atoms

VRyd(r) = 2π h̄2ae

me
|ψe(r)|2. (1)

Here ae is the electron–ground-state-atom scattering length,
me the electron mass, and r the distance separating a ground-
state atom from the ionic core of the Rydberg impurity.

The oscillatory nature of the potential, shown as the black
line in Fig. 2, reflects the nodal structure of the Rydberg
electron wave function ψe(r) [13]. For ae < 0, this potential
supports bound vibrational states [14] (see Fig. 2). Since
the principal number n can be chosen in experiments, the
scaling of the range and oscillations of |ψe(r)|2 with n offers
a complementary tool for the control of interactions beyond
the widely employed magnetically or optically tuned Fano-
Feshbach resonances [15].

B. Rydberg impurity model

Rydberg impurities in Fermi gases can be realized in
atomic mixtures where a small fraction of one species is
immersed in a Fermi gas of another species. A laser resonant
with an atomic transition of the minority species excites a
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FIG. 2. Rydberg molecular potential. The Rydberg potential
VRyd(r) is shown for a 87Rb(71s) excitation as obtained from a
quantum defect calculation in an s-wave scattering approximation.
The potential is shown as a function of the distance r between the
Rydberg ion and an atom in the Fermi sea. The interacting single-
particle bound radial wave functions ukα,lα (r) are shown as colored
lines. The inset shows the lowest three vibrational states for angular
momenta l = 0 (solid line) and l = 1 (dashed line). The offset of
the wave functions corresponds to their respective energies. This
exemplary potential is used for all numerical results shown in this
work.

single atom from its electronic ground state denoted by |↓〉
to a highly excited Rydberg state |↑〉 = |n〉 (here we suppress
all other quantum numbers), creating a single impurity in the
Fermi gas.

To keep the analysis transparent, we focus on heavy Ry-
dberg impurities, for which the ion recoil can be neglected.
Furthermore, at low temperatures direct fermion-fermion in-
teractions can be completely ignored. To this end, the Rydberg
impurity interacts with the degenerate Fermi gas according to
the Hamiltonian

Ĥ =
∑

k

εkĉ†
kĉk + 1

V
∑
k,q

VRyd(q)ĉ†
k+qĉkd̂†d̂, (2)

where V is the system volume and d̂ is the annihilation
operator of the heavy Rydberg impurity atom in the |↑〉 state
initially localized at R = 0. It interacts with bath fermions
with dispersion relation εk = k2/2m via the potential VRyd(q),
the Fourier transform of Eq. (1). In real space this interaction
takes the form

∫
r dr ĉ†(r)ĉ(r)VRyd(r)d̂†d̂ .

In this work we compare the physics of Rydberg excita-
tions in bosonic and fermionic environments. To allow for
such a direct comparison, all numerical results are shown for
bath atoms (fermionic or bosonic) of atomic mass 87 and a
representative potential VRyd(r) as calculated for a 87Rb(71s)
Rydberg excitation (see Fig. 2). Our main conclusions and
the observed effects are expected to be universal and to
apply to Rydberg excitations with different principal quantum
numbers.

III. FERMIONIC MANY-BODY DYNAMICS INDUCED
BY RYDBERG EXCITATIONS

Previous theoretical analyses of the interaction of Rydberg
with ground-state atoms and the resulting molecule formation
have mostly focused on calculations of binding energies, wave
functions, and density-independent spectral lines of dimers or
trimers [16–22]. Recent work [10,11] introduced an approach
to study the many-body quantum dynamics of bosonic sys-
tems. Here we extend this method to fermions by combining
an atomic physics few-body approach to Rydberg molecule
formation with many-body techniques of mesoscopic physics,
which allows us to accurately capture the multiscale na-
ture and nonperturbative character of the Rydberg impurity
problem.

A. Absorption line shapes from quench dynamics

The frequency-resolved absorption spectrum A(ω) is ob-
tained from the Fourier transform

A(ω) = 2 Re
∫ ∞

0
dt eiωt S(t ) (3)

of the time-dependent overlap function [23–25] (Appendix A)

S(t ) = Tr[eiĤ0t e−iĤt 
̂], (4)

where 
̂ = e−β(Ĥ0−μN̂ )/Z is the density matrix of free fermions
in the absence of the impurity at inverse temperature β =
1/kBT and chemical potential μ, with kB the Boltzmann
constant and Z the partition function of the Fermi gas. The
Hamiltonian in the absence of the impurity is given by Ĥ0,
and Ĥ is the Hamiltonian in the presence of the impurity
[Eq. (2)]. The expression (4), also known as the Loschmidt
echo, describes the dephasing dynamics of the fermionic
environment following a quench of the impurity-bath potential
due to the sudden introduction of the Rydberg excitation in
the atomic gas. It can be directly measured using Ramsey
spectroscopy [24–30].

B. Functional determinants

To compute the quantum dynamics as determined by the
Loschmidt echo S(t ), we develop an extension of the func-
tional determinant approach (FDA) [7] suited for long-range
impurity potentials, which provides exact numerical results
for systems described by bilinear Hamiltonians. The strength
of the FDA lies in the ability to reduce expectation values
of many-body operators to determinants in the single-particle
Hilbert space (for details see Appendix B), taking into account
infinitely many bath excitations. In this way, the FDA allows
one to efficiently compute the many-body dynamics induced
by the Rydberg impurity in the Fermi sea, keeping track
of the full antisymmetrization of the many-body wave func-
tions, along with the Boltzmann factors needed for thermal
averaging at finite temperatures. Note that accounting for the
infinite number of bath excitations needed to characterize
mesoscopic Rydberg impurities in fermionic baths presents a
challenge to standard diagrammatic approaches, since the de-
scription of multibody bound states requires computing high-
order scattering vertices. Our nonperturbative FDA technique
circumvents this challenge and can be applied generally in
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scenarios where one deals with the physics of a large number
of fermions in extended and time-varying potentials.

Within the FDA, the time-dependent overlap (4) evaluates
to (Appendix C)

S(t ) = det[1 − n̂FD + n̂FDeiĥ0t e−iĥt ], (5)

where the determinant is calculated in the single-particle
Hilbert space, with ĥ and ĥ0 the one-body counterparts of
Ĥ and Ĥ0, respectively. Furthermore, n̂FD = 1

e(ĥ0−μ)/kBT +1
gives

the Fermi-Dirac distribution in the ‘noninteracting’ single-
particle orbitals determined by ĥ0.

Since the Rydberg potential is spherically symmetric, dif-
ferent angular momentum l channels are decoupled. As a
result, the Loschmidt echo factorizes into a product of l-
dependent terms (Appendix C)

S(t ) =
∏

l

Sl (t ), (6)

where Sl (t ) = [sl (t )]2l+1 encodes the quantum dynamics
within the given l manifold with 2l + 1 degenerate m states,
with

sl (t ) = det

⎛
⎝δs,s′ (1 − nFD(εs))

+ nFD(εs′ )
∑

kα

ei(εs′ −ωα )t 〈ks′ |kα〉〈kα|ks〉
⎞
⎠. (7)

Here α and s are collective indices that include the nodal
quantum number k, angular momentum l , and projection m of
the interacting and noninteracting single-particle eigenstates,
respectively. To evaluate this expression, we calculate the
radial wave functions in the presence of the impurity, ukα

(r) =
〈r|kα〉, and in its absence, uks (r) = 〈r|ks〉, of eigenenergies εα

and εs, respectively. The single-particle orbitals are obtained
numerically from the bound and continuum eigensolutions of
the Schrödinger equation for a localized Rydberg impurity
(for details see Appendix C).

IV. PAULI-ENFORCED ROTATIONAL BLOCKADE
AND FERMI COMPRESSION

In the following we expand on the discussion of the
two main features of this work. (a) Although the angular
momentum shells have a typical spacing of ∼1 kHz (de-
termined by the Rydberg molecule rotational constant) and
are thus not spectroscopically resolved, it is the Franck-
Condon overlaps of bound molecular wave functions with the
free single-particle wave functions that ultimately determine
the spectral intensity (shown in Figs. 3, 5, and 7). These
overlaps are exponentially suppressed (see Fig. 4) and lead
to the inhibition of fermionic molecule formation. We term
this effect rotational blockade. (b) The quantum statistics of
Fermi occupation leads, at higher gas densities, to a spectral
narrowing of superpolaronic features which we interpret as a
Fermi compression.

To appreciate the distinct properties of Rydberg impurities
in a fermionic many-body environment, it is instructive to
first contrast their physics with the recently experimentally

FIG. 3. Impact of quantum statistics at low density. The absorp-
tion spectrum A(ω) of the Rydberg impurity in the Fermi sea (solid
line) and its l = 0 component (dotted line) are compared to the
spectrum obtained for a Rydberg excitation in a BEC (dashed line)
at low density ρ = 5 × 1011 cm−3.

realized scenario [27,28,31–34] of impurities interacting with
bath atoms via attractive contact interactions. There, if the
interaction potential is sufficiently attractive, dimers can form.
Those dimers exist, however, only in a state of zero angular
momentum. This is in stark contrast to Rydberg impurities in
a Fermi gas where, due to the large extent of the impurity-
bath interaction, Rydberg molecules form in states of finite
angular momentum. This difference precludes cold atoms
interacting solely by short-range interactions as a platform to
study the competition of Pauli exclusion and occupation of
bound states of higher angular momentum, essential to realize
the physics of shell structures, rotational blockade, and Fermi
compression.

A. Absorption spectrum at low densities

In Fig. 3 we compare the spectrum of a Rydberg impurity
in a Fermi sea to that in a Bose-Einstein condensate (BEC),
both at low density ρ = 5 × 1011 cm−3. The fermionic re-
sponse (blue solid line) is calculated according to Eq. (6),
while the spectrum for the BEC (red dashed line) is ob-
tained using the methods described in Ref. [10] (see also
Appendix D).

Even at such a low density, we observe a suppression
of spectral weight at large detuning ω when comparing the
fermionic response to that of a BEC. While dimers D0, D1, D2,
etc. form in both the Fermi and Bose gases with the same line
strength, higher-order molecular complexes, such as trimers
Tr00, Tr01, Tr02, etc., tetramers Te000, Te001, etc. and pentamers
P0000, etc., are suppressed (the indices denote the vibrational
quantum numbers of the molecular states involved).

As in the nuclear shell model, the bound-state config-
urations must obey the Pauli exclusion principle. Thereby
trimers, tetramers, etc. are composed of particles in different
angular l and magnetic m orbitals. As such, Rydberg impuri-
ties provide a cold-atom analog of the nuclear shell model [2],
with orbitals that can be adjusted by choosing the principal
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number of the Rydberg excitation. In contrast to nuclear
physics [2], in the cold-atom setting the confining potential is
not self-generated by the particles that become bound, but by
the interaction between the Rydberg electron and background
atoms. Therefore, it becomes possible to switch on or off the
shell-model-defining potential and on timescales much faster
than the inverse binding energies. This also implies that for
Rydberg excitations the formation of the shell structure is
inherently dynamical. This allows studying the full spectrum
of the model and the nonequilibrium occupation of its excited
shells.

The shell structure concept helps to unravel the mech-
anisms at play in Fig. 3. While the introduction of the
Rydberg impurity modifies the single-particle spectrum of the
background gas by introducing bound states and affecting
the continuum scattering states by small phase and energy
shifts, it conserves the total angular momentum. Using this
fact, we decompose the response shown in Fig. 3 in the
various l channels and show the contribution to the fermionic
spectrum from atoms in states of angular momentum l = 0.
Evidently, this contribution (blue dotted line) accounts for
most of the overall absorption response (solid line). In simple
terms, this effect can be understood from the fact that atoms
occupying l = 0 states in the initial Fermi sea are the only
ones with substantial spatial overlap with the volume of the
Rydberg excitation. While the l = 0 contribution accounts for
nearly all of the fermionic dimer response, trimer and higher-
order lines are missing. On the one hand, this suppression
arises since l = 0 states can only be occupied once. On the
other hand, while this argument prohibits the formation of
a Tr00 trimer, it does not exclude the trimers such as Tr01

that consist of atoms occupying different vibrational states,
akin to the occupation of higher vibrational orbitals in the
nuclear shell model. Compared to the bosonic environment,
even these trimer and tetramer states are, however, suppressed.
The reason for this finding is that by the restriction to the
l = 0 subspace one does not account for the total number of
fermions in the system. Thus, the isolated l = 0 contribution
corresponds to an effective density that is lower compared to
the T = 0 BEC, where all bosons reside in the zero angular
momentum subspace.

The remaining contribution to the full spectrum in Fig. 3
(solid line) originates thus from fermions that initially resided
in finite angular momentum states of the noninteracting Fermi
sea. Due to the conserved angular momentum, these fermions
can occupy states in the molecular shell structure that have
the same final angular momentum. Considering the extremely
small rotational constant of the Rydberg molecules, a large
number of such rotational shells is in principle energetically
available to the bath atoms. Thus one might expect the spectral
response of fermions and bosons to be similar. Consequently,
differences due to occupation of higher-l states would only be
observable if the rovibrational energies become comparable to
the experimental resolution (which may be in reach for lighter
atomic species such as 6Li). Considering this argument, it
is thus at first surprising that in Fig. 3 quantum statistics
apparently plays a role in determining the absorption response
of fermions compared to that of bosons.

The puzzle is resolved when considering the collisional
many-body physics involved: The initial state of the Fermi

sea describes atoms that fill noninteracting single-particle
orbitals in various angular momentum modes up to the Fermi
level (for an illustration see Fig. 1). The higher the angular
momentum of those states is, the smaller the spatial overlap
of their single-particle wave function with the volume of the
Rydberg excitation becomes. This leads to the observation that
while the angular momentum orbitals are indeed energetically
quasidegenerate, the Frank-Condon factors (FCFs) between
noninteracting and interacting single-particle states exhibit
systematic variations with angular momentum that help to
explain the absorption response.

In Fig. 4(a) we illustrate the l dependence of the single-
particle FCFs (or overlaps) |〈1α, l|ks, l〉|2 between the lowest
noninteracting states |ks, l〉 (k = 1, 2, and 3) and the bound
dimer |1α, l〉. A superexponential decay with l of the FCFs,
which characterize the probability for occupying bound states
from the initially noninteracting state of free fermions, is
found (see Appendix F). This decay can be traced to the
centrifugal angular momentum barrier and the suppression of
the noninteracting single-particle wave functions with higher
l , within the volume of the interacting bound-state wave
functions [see Fig. 4(b)]. As can be seen there, the interacting
wave functions are nearly the same for different l as they
experience an effective potential that is dominated by the
Rydberg interaction. In contrast, the effective potential for
the free fermions is solely determined by the centrifugal
barrier, which results in noninteracting wave functions that
are increasingly suppressed at small distances with higher l .
We refer to the suppression of absorption response as a Pauli-
enforced Rydberg rotational blockade since it is the Pauli
principle that forces additional particles that could be bound
within the Rydberg orbital to occupy higher-l single-particle
states, thus suppressing the FCFs. The Rydberg rotational
blockade of the Rydberg molecular shell structure is also
evident when considering the average occupation number nl

of the various s, p, and d shells in the Rydberg orbit. Their
occupation, shown as an inset in Fig. 1, requires atoms in
the initial state to overcome the rotational barrier and thus
demands a sufficiently high Fermi energy εF.

We note that rotational blockade effects are familiar from
the collisional physics of ultracold atoms close to their elec-
tronic ground state [15,35,36]. There, however, the range
of the potential is determined by the van der Waals length
of ∼100a0 and the rotational barrier is therefore at much
higher energies. In contrast, Rydberg molecules are created
at much larger separations of ∼10 000a0, allowing for the
physics of the rotational blockade to be studied in a previously
inaccessible parameter regime.

B. Spectral evolution with increasing density

We now turn to the behavior of the absorption spectra
with increasing density. In Fig. 5 we show spectra for three
densities corresponding to an increasing Fermi energy εF that
ranges from about 0.5 to 3 kHz. As before, the low-density
response (solid line) is dominated by the formation of few-
body bound states. These result in a series of molecular lines
that correspond to one or two background atoms bound inside
the Rydberg orbit. As the density grows, a larger number of
fermions occupy the bound states (see the dot-dashed line
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(a) (b)

FIG. 4. Rydberg rotational barrier. (a) Franck-Condon factors |〈1α, l|ks, l〉|2 between the lowest molecular dimer states |1α, l〉 and the
noninteracting states |ks, l〉 of nodal number k = 1, 2, and 3 as a function of the rotational angular momentum l . (b) Comparison of the spatial
structure of the interacting and noninteracting single-particle states that give rise to the superexponential decay with l of the Franck-Condon
factors shown in (a). In contrast to the noninteracting states (dashed lines), the molecular dimer states (solid lines) in the s, p, and d orbitals of
the shell structure are deeply localized in the outermost potential well at R0 ≈ 8800a0 and are thus hardly affected by the rotational barrier.

in Fig. 5). For this density, corresponding to εF ≈ 1.6 kHz,
the average interparticle distance in the medium is ∼8700a0.
From this, one estimates that on average about one atom is
situated inside the Rydberg orbit which for the excitation
considered in this work has the radius R0 ≈ 8800a0. In a
classical statistical picture one would thus assume that, on
average, a single atom binds to the impurity to form a dimer.
In the setup considered here, the dimer has an energy ED ≈
220 kHz, and hence the mean of the spectrum is expected
to occur at this frequency, which is consistent with the result
from the full quantum calculation shown in Fig. 5.

The Fermi energy also determines which atoms from the
initial state can in principle participate in the nonequilibrium

FIG. 5. Spectral evolution with density. The absorption spectrum
A(ω) of a Rydberg impurity is shown in a Fermi sea of density
ρ = 5 × 1011, 2.5 × 1012, and 7.5 × 1012 cm−3. Here A(ω) exhibits
an evolution with increasing densities to a broad distribution as
characteristic of the Fermi superpolaron.

Rydberg quench dynamics; it is all of those atoms that have
sufficient kinetic energy (including atoms with angular mo-
mentum l = 0) to overcome the rotational barrier and acquire
appreciable overlap with the bound molecular wave functions.
In Fig. 6 we show the energies of the noninteracting single-
particle states (colored circles) in the absence of the Rydberg
impurity and the rotational barrier ∼l (l + 1)/2mR2

0 at the
radius R0 of the Rydberg electron orbit (blue solid line). In
the color code, we show their corresponding Franck-Condon
factors with the lowest Rydberg molecular dimer state. The
evolution of the FCFs with energy for the various l states

FIG. 6. Effect of the rotational barrier on the initial Fermi sea.
The height of the centrifugal barrier El (R0) = l (l + 1)/2mR2

0 (blue
line) is shown at the radius R0 of the outermost potential well and
the evolution is shown with energy of the Franck-Condon overlaps
|〈1α, l|ks, l〉|2 between the lowest interacting nodal state |1α, l〉 and
the noninteracting states |ks, l〉 of nodal number k. The arrows
indicate the Fermi energies chosen for the calculations of the spectra
in Fig. 5.
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shows that the dimer states become rapidly accessible to the
Fermi atoms once their energy crosses the rotational barrier.
For instance, for a Fermi energy εF ≈ 1.6 kHz (see Fig. 6),
atoms in the l = 0, 1, 2 states can overcome the barrier and
participate in the dynamics. Combining this finding with the
concept of the filling of shell structures now helps to explain
the corresponding absorption response shown as green dot-
dashed curve in Fig. 5. Angular momentum is conserved in
the bound-state formation. Thus, although many atoms are
available in the l = 0, 1, 2 initial states, at most only nine
can actually become bound in the available molecular states
since then the molecular shells of l = 0, 1, 2 become filled
as dictated by the Pauli exclusion principle. This is in stark
contrast to the case of bosons, for which no bound on the
rotational shell occupancy exists.

We now turn to the effect of a higher density (red dashed
line in Fig. 5), corresponding to εF ≈ 3.2 kHz. As an estimate,
at this density, on average three atoms reside inside the
Rydberg orbit, consistent with the spectral mean of ∼660 kHz
found in our FDA calculation. The fact that the spectrum
extends to larger detuning representing tetramers, pentamers,
etc., is consistent with the Pauli-enforced Rydberg rotational
blockade and the filling of the molecular shell structure. At
this density, the Fermi energy is high enough to populate up to
l = 3 states that have a significant spatial FCF with the region
inside the Rydberg orbital. These states then participate in the
dynamics and dress the impurity with molecular bound states.
This is reflected in the corresponding filling of s, p, d , and
f states in the shell structure, shown in the inset of Fig. 1,
which now includes a contribution from f -shell states. As can
be seen in Figs. 6 and 7(b), in agreement with the relative
occupation of shell states, the spectral response is now found
up to frequencies that correspond to nine or more atoms bound
to the impurity. Note that the low-energy l > 0 fermions deep
below the Fermi surface are still unable to cross the barrier.
Therefore, the number of particles that can participate in the
dynamics will always be lower than that for bosons (at the
same total number of atoms), leading to a suppression of
weight at large detuning (see the discussion of Fig. 7 below).

As the gas density is increased, the spectrum evolves from
resolved molecular lines with an asymmetric envelope (solid
and dot-dashed lines in Fig. 5) to a distribution of peaks
that has a continuous envelope (dashed line), which moves
progressively towards larger detuning. This broad spectral
response represents the formation of Fermi superpolarons, the
fermionic analog of superpolarons formed in Bose-Einstein
condensates [6,10]. In Fig. 7 we compare the spectrum of
Fermi and Bose Rydberg superpolarons at high densities. As
evident from Fig. 7(a), compared to bosons, Fermi statistics
leads to a reduced spectral weight at large detuning due
to the suppression of Franck-Condon overlaps for states of
higher angular momentum l . As the density is however further
increased, a spectral suppression is observed not only at large
but also at small detuning [see Fig. 7(b)].

This effect can be understood as follows. For ideal bosons,
the positions of particles are independent of each other and
follow a Poisson distribution. In contrast, quantum statistics
imprints intrinsic density-density correlations onto fermions,
prominently visible as a correlation hole at small particle sep-
aration, that make them less compressible than bosons. The

(a)

(b)

FIG. 7. Shell structure with increasing densities. A comparison
between spectra of a Rydberg impurity in a Fermi sea and in a
BEC is shown at density (a) ρ = 2.5 × 1012 cm−3 and (b) ρ = 7.5 ×
1012 cm−3. In both cases, spectral suppression is visible for fermions
at large detuning. At high densities an additional compression of the
spectrum is found at small detunings that originates from suppressed
density fluctuations in the fermionic medium. The response at large
detuning [inset in (b)] reveals the formation of bound complexes of
a large particle number.

consequently reduced density fluctuations in the background
gas then directly imply a suppressed spectral response at both
large and small detuning. As an example, consider the case
where a five-particle complex has the highest spectral weight.
In the Bose gas, fluctuations in the medium will strongly con-
tribute to the spectral weight of four- and six-body complexes.
However, for fermions these contributions are weaker due to
the suppressed density fluctuations, leading to a compression
in the spectral response of fermions at both large and small
detuning. The observation of spectral compression can thus
serve as a local probe of the compressibility of the many-body
environment.

While the suppression at small detuning can qualita-
tively be understood in the simple picture of density fluctua-
tions, capturing this effect quantitatively presents a challenge
for theoretical approaches. In particular, variational wave
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functions in terms of expansions in particle-hole excitations
[37,38] or vertex expansions in diagrammatic approaches
[39–42], which were successfully applied in the description
of many conventional impurity problems, are bound to fail
to capture the physics of Rydberg impurities in a Fermi gas,
due to their limitation in capturing the excitation of a large
number of particle-hole excitations. In contrast, the functional
determinant approach can describe this system as it allows
accounting for an arbitrary number of atoms transferred from
the initial Fermi sea into the molecular shell structure while
keeping track of the full antisymmetrization and thus the cor-
rect spatial nodal structure of the many-body wave function.

V. RELATION TO ANDERSON
ORTHOGONALITY CATASTROPHE

The Anderson orthogonality catastrophe (OC) refers to the
response of a Fermi gas to the introduction of a localized
impurity [8], where the generation of an infinite number of
particle-hole excitations leads to a new fermionic ground
state that is orthogonal to the Fermi sea in the absence of
the impurity. This scenario was originally considered in the
context of the x-ray absorption spectra in metals, where it is
manifest in characteristic threshold singularities and a power-
law decay of the impurity Green’s function in the time domain
[9]. More recently, signatures of the OC in the time domain
have been shown to be accessible in Ramsey interference
experiments of impurities in ultracold fermions controlled by
Feshbach resonances [24,27].

So far, efforts to realize the physics of the OC in ultra-
cold atoms [24,25,27], following the observation of mobile
Fermi [31,32] and Bose polarons [43–45], have focused on
systems where the impurity interacts with the Fermi gas via
contact interactions that can support at most a single bound
state. Realistic solid-state systems, such as quantum dots
realized in semiconductor devices, go beyond this regime.
In these systems, multiple electrons can be bound and the
response of the Fermi environment of charge carriers can be
probed through transitions between electronic states. These
transitions lead to features characteristic of the OC, such
as power-law edges in photoluminescence [46] and electron
tunneling [47–49]. While the Coulomb blockade limits the
number of electrons that can occupy bound states in quantum
dots, Rydberg impurities allow access to a regime where large
multibody bound complexes are formed in the presence of a
fermionic environment.

In this work we focused specifically on the spectral sig-
natures of molecular bound states. However, in our theoret-
ical approach the creation an infinite number of low-energy
particle-hole excitations close to the Fermi surface is also
accounted for [25], which leads to asymmetric wings attached
to each molecular peak. The existence of these molecular ab-
sorption edges in the Fermi superpolaron response presents an
opportunity to study the OC in regimes where the perturbing
potential permits multiple occupation of bound states. Unlike
in quantum dots, the direct interaction between fermions can
be tuned or entirely eliminated. Moreover, without direct
interactions, the case we consider in the present work, the
molecular peaks are inherently excited states of the system,

a scenario that goes beyond limitations of previous studies in
ultracold atomic and solid-state systems.

It is believed that in dimensions higher than one, a finite
impurity recoil leads to the disappearance of the OC [50].
An interesting question in the context of finite-mass Rydberg
excitations is whether large impurity-bound molecules exhibit
a crossover from quasiparticle to OC behavior. The mass of
larger complexes grows fast and should scale linearly with
the number of atoms bound to the impurity. Thus larger
complexes may show a sharp OC behavior, while smaller
ones may exhibit quasiparticle properties. This argument also
implies that our approach to infinitely heavy impurities may in
fact be a reasonable starting point to describe large molecular
polarons even in the regime where the impurity mass is finite.
This unusual behavior makes Rydberg excitations a unique
setting for exploring OC physics, which so far has been
challenging in Feshbach-coupled quantum gases for which
recoil effects are significant [27].

Furthermore, since the interaction range varies with the
principal number n as r0 ∼ n2h̄24πε0/e2m, the energy and
the size of the molecular states can be tuned to the different
regimes of dynamics. Along with control over temperature
and gas density, this introduces many compelling questions,
such as whether the exchange of medium fluctuations may
lead to a hybridization of bound states and whether the OC
has an observable effect on the hybridization dynamics.

VI. CONCLUSION

We have described a platform to study multiscale quantum
impurity effects in a Fermi sea. To this end, we have developed
a time-dependent many-body formalism based on functional
determinants that treats the bound Rydberg molecules and
scattering states on the same footing, to follow the nonequi-
librium time evolution of the degenerate Fermi gas interact-
ing with a spatially extended Rydberg impurity. Accounting
for all angular momentum contributions, we predict the ab-
sorption spectrum and demonstrate that the spectroscopy of
Rydberg excitations allows probing the physics of quantum
impurities interacting with a Fermi gas in a regime where the
impurity itself may extend over nearly the system size.

The analysis of the absorption spectra reveals the emergent
effect of a Pauli-enforced Rydberg rotational blockade that
inhibits the formation of trimers, tetramers, and higher-order
oligomer molecules. While blockade effects are at play in the
formation of fermionic ultracold Feshbach molecules [15],
there the rotational barriers are at much higher energies. In
contrast, by virtue of the fact that Rydberg molecules are
created at enormous distances, their rotational barriers are but
a small fraction of the binding energies, so the physics of
rotational blockade can be studied in a previously inaccessible
regime.

At low densities of the environment, the absorption re-
sponse reveals a shell structure where fermions subsequently
fill shells that are defined by angular momentum and vibra-
tional quantum numbers. In the many-body regime at high
densities our findings deviate from the expectation that, for
such macroscopic fermion systems, the spectral response
should resemble that of a Rydberg impurity in a Bose gas.
Instead we find that the macroscopic occupation of angular
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momentum shell modes results in a Fermi superpolaronic
response whose signature is a spectral narrowing (Fermi com-
pression) compared to the response in a bosonic gas, which
can serve as a local probe of the density-density correlations
of the many-body environment, complementing probes of
transient dynamics in quantum gases [51].

The evolution from few- to many-body behavior in-
volves bound-state physics in the presence of an environ-
ment that goes beyond condensed matter realizations, such as
phonon-induced binding of Cooper pairs or trion formation
in the presence of a charge-carrier environment in doped
two-dimensional semiconductors [52,53]. In particular, the
exquisite control over Rydberg excitation represents a mecha-
nism for structuring the local density surrounding the Rydberg
atoms and permits study of the interplay between nonpertur-
bative few- and many-body effects in Fermi systems.

A. Experimental realization

To realize the physics of Fermi superpolarons and study the
suppression of molecule formation, experiments with mass-
imbalanced Bose-Fermi or Fermi-Fermi mixtures featuring a
low density of a heavy atomic species in a background Fermi
gas of lighter atoms are ideal. Starting from impurities initially
in their atomic ground state, a laser transition implements
the sudden quench of the impurity potential experienced by
the atoms in the Fermi sea that are initially uncorrelated to the
impurity atom. In order to avoid blockade effects and to gain
access to the linear response regime, one can use an excitation
pulse of sufficiently low power [6].

Alternatively, one may also employ Rydberg excitations
in a single-component Fermi gas. Indeed, evidence of the
Fermi suppression discussed in this work has recently been
observed in a nondegenerate gas of 87Sr [54]. In such a setup,
a laser excites a fermion from the single-component Fermi
gas to a highly excited Rydberg state. Since the initial state of
the Fermi gas corresponds to a Slater determinant, it exhibits
density-density correlations with a characteristic correlation
hole at short distances. This correlation hole leaves its trace in
a suppression of the formation rate of dimers, as the Rydberg
excitation is created from the Fermi gas itself. While this
effect significantly influences the absorption signal of dimers
relative to the scenario of a two-component gas studied in this
work, in the limit of high densities the two scenarios will not
differ significantly since the initial correlations of the Rydberg
impurity and the bath become increasingly irrelevant. In con-
sequence, single-component quantum gases will also realize
the physics of Fermi superpolarons and suppressed molecular
formation discussed in this work.

We note that in the present work we have focused on the
zero-temperature response. Our results extend, however, to
finite temperatures less than the Fermi temperature, i.e., in the
range ∼25–150 nK for the densities studied in this work. This
temperature range can be further increased by employing a
fermionic species of a small mass such as atomic 6Li.

B. Outlook

The presented results are exact for a localized impurity and
approximate for heavy but mobile impurities. For infinitely

heavy impurities, the orthogonality catastrophe governs the
many-body dynamics and quasiparticles are absent due to the
generation of an infinite number of particle-hole excitations.
For a finite-mass impurity, the energy cost of impurity recoil
suppresses these low-energy fluctuations, leading to a finite
quasiparticle weight of Fermi polarons [50,55]. Moreover, for
impurities interacting with the environment via short-range
interactions, impurity recoil leads to a transition between a
polaron and a molecular ground state [56,57]. In the case
of Rydberg impurities, the consequences of a finite impurity
mass are currently unknown. In which way Fermi polarons
form and whether polaron-to-molecule transitions can occur
are open questions. Additionally, since the multibody bound
molecules are inherently excited states of the many-body
system, the question arises whether impurity motion can
potentially lead to recoil-induced decay between the differ-
ent molecular states, rendering them unstable. While these
effects can be experimentally addressed by exploiting the long
coherence times accessible with current technologies, their
theoretical investigation requires new many-body approaches
that can capture the multiscale nature of Rydberg impurities
as well as their motion.
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APPENDIX A: DERIVING A(ω) FROM S(t )

In linear response theory, the two-photon absorption spec-
trum is given by Fermi’s golden rule

A(ω) = 2π
∑
i, f

e−β(Ei−μni )

Z
|〈 f |̂L|i〉|2δ(ω − (E f − Ei )),

(A1)

where β−1 = kBT , Z is the grand canonical partition function,
μ is the chemical potential, and ni denotes the number of
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particles present in the initial state. As before, we have set
h̄ = 1. In the experiment, ̂L represents the laser-induced
transition operator |↑〉〈↓| that excites an atom to a Rydberg
state |↑〉, which, in our model, takes the form ̂L = d̂† for the
impurity in the atomic gas. The sum in Eq. (A1) extends over
complete sets of initial |i〉 and final | f 〉 many-body states with
energies Ei and E f .

Inserting the Fourier representation of the δ distribution
and using that |i〉 and | f 〉 are many-body eigenstates of Ĥ0

and Ĥ , respectively, A(ω) takes the form

A(ω) =
∫ ∞

−∞
dt

∑
i, f

〈i|
̂eiĤ0t | f 〉〈 f |e−iĤt |i〉eiωt

=
∫ ∞

−∞
dt Tr[
̂eiĤ0t e−iĤt ]eiωt

= 2 Re
∫ ∞

0
dt Tr[
̂eiĤ0t e−iĤt ]eiωt , (A2)

where 
̂ is the density matrix of the initial state of the
noninteracting particles. The time-dependent overlap is

S(t ) = Tr[eiĤ0t e−iĤt 
̂] (A3)

and we arrive at Eq. (3) [25].

APPENDIX B: FUNCTIONAL DETERMINANT APPROACH

The functional determinant approach provides an effective
evaluation of many-body expectation values in Fock space
in terms of first-quantized single-particle operators [7]. For
bilinear operators, one finds the relation [58]

〈eX̂N · · · eX̂1〉T = det[1 − ζ n̂ + ζex̂N · · · ex̂1 n̂]ζ , (B1)

where 〈 〉T denotes the thermal expectation value evaluated
with respect to the appropriate thermal density matrix, X̂i

denotes a quadratic (bilinear) many-body operator, and x̂i is
the corresponding single-particle operator. More specifically,
X̂ = ∑

j,k〈 j|x̂|k〉â†
j âk , where âi are second-quantized opera-

tors defined with respect to the single-particle basis states
|i〉, n̂ is the single-particle number operator, and ζ = 1 for
fermions and ζ = −1 for bosons. For more details about the
FDA for fermions we refer to Refs. [7,58–60] and for bosons
to Refs. [10,58].

APPENDIX C: TIME-DEPENDENT OVERLAP OF A
RYDBERG IMPURITY IN A FERMI SEA S(t )

For the Hamiltonian (2), the FDA formula (B1) gives

〈eiĤ0t e−iĤt 〉T = det[1 − n̂FD + n̂FDeiĥ0t e−iĥt ], (C1)

which yields for S(t ) the expression in Eq. (5). To find S(t ),
we compute the matrix elements of the temperature (T )-
dependent single-particle operator

Ĉ(T ) = 1 − n̂FD + n̂FDeiĥ0t e−iĥt (C2)

in the basis of noninteracting single-particle orbitals. We
insert in Eq. (C2) the complete set of eigenstates of the
interacting single-particle Hamiltonian ĥ, determined from the

solutions of the Schrödinger equation(
− 1

2m
∇2 + VRyd(r)

)
φ(r) = Eφ(r), (C3)

where m is the mass of bath atoms. For simplicity, and to allow
direct comparison with boson spectra, we use the mass of 87Rb
in our FDA calculations for both fermions and bosons.

The spherically symmetric Rydberg potential leads to sep-
aration of angular and radial variables, φ(r) = ukl (r)

r Ylm(�),
reducing the problem to the radial Schrödinger equation(

− 1

2m

∂2

∂r2
+ l (l + 1)

2mr2
+ VRyd(r)

)
ukl (r) = εklukl (r), (C4)

which we solve numerically in a spherical box of radius
R = 2 × 105a0. We provide details about the numerical diag-
onalization in Appendix E.

Expressed in the noninteracting single-particle states |s〉
with energy εs [s = (ks, ls, ms) with nodal number k, angular
momentum l of projection m on the quantization axis], one
finds

Cs′,s(T ) ≡ 〈s′|Ĉ|s〉
= δs,s′ (1 − nFD(εs)) + nFD(εs′ )〈s′|eiĥ0t e−iĥt |s〉. (C5)

At T = 0, fermions fill up single-particle states εs � εF and
n(εs) = 1. Equation (C5) simplifies to

Cs′,s(0) =
{
〈s′|eiĥ0t e−iĥt |s〉 if εs < εF

δs,s′ otherwise.
(C6)

We insert a complete set of the interacting single-particle
states |α〉, where α = (kα, lα, mα ) labels the interacting
single-particle states with energy ωα ,

Cs′,s(0) =
∑

α

〈s′|eiĥ0t e−iĥt |α〉〈α|s〉

= eiεs′ t
∑

α

e−iωαt 〈s′|α〉〈α|s〉. (C7)

Due to spherical symmetry, the impurity potential does
not couple different angular momentum states: 〈α|s〉 ≡
〈kα, lα, mα|ks, ls, ms〉 = 〈kα|ks〉δlα,lsδmα,ms . Thus

Cs′,s(0) = δls,ls′ δms,ms′

∑
kα

ei(εs′ −ωα )t 〈ks′ |kα〉〈kα|ks〉

= δls,ls′ δms,ms′Cs′,s(l, m), (C8)

where we have defined the matrix Cs′,s(l, m) =∑
kα

ei(εs′ −ωα )t 〈ks′ |kα〉〈kα|ks〉 that couples different nodal
ks states within the subspace labeled by ls and ms. In
matrix notation one thus finds a block-diagonal structure
C = diag{C(l = 0, m = 0)C(l = 1, m = −1)C(l = 1, m = 0)
C(l = 1, m = 1) · · · C(l = lmax, m = mmax)}, where lmax and
mmax label the highest occupied states at or just below the
Fermi level. The determinant of a block-diagonal matrix is
the product of determinants of the diagonal blocks

S(t ) =
∏
l,m

sl,m(t ), (C9)
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where sl,m(t ) = det[C(l, m)]. Accounting for the degenerate
m states within the manifold of l leads to

S(t ) =
∏

l

[sl (t )]2l+1, (C10)

with sl (t ) = detC(l ) = ∑
kα

ei(εk′
s ,l′s −ωkα ,lα )t 〈ks′ |kα〉〈kα|ks〉,

which depends only on l . We defined Sl (t ) = [sl (t )]2l+1 in
the main text.

APPENDIX D: TIME-DEPENDENT OVERLAP OF A
RYDBERG IMPURITY IN A BOSE-EINSTEIN

CONDENSATE

The Fock state representing the macroscopic occupa-
tion of bosons in an ideal BEC is given by |�BEC〉 =

1√
NB!

(b̂†
0)NB |vac〉, where b̂†

0 is the creation operator of a bo-
son in the lowest-energy single-particle state of zero angular
momentum, NB is the boson particle number, and |vac〉 is the
vacuum state. Evaluating the time-dependent overlap (4) with
respect to the density matrix 
̂BEC = |�BEC〉〈�BEC| gives

SBEC(t ) = 〈�BEC|eiĤ0t e−iĤt |�BEC〉. (D1)

Expanding |�BEC〉, we find

SBEC(t ) = eiNBε0t 1

NB!
〈vac|

(∑
α

〈0|α〉b̂α

)NB

e−iĤt

×
(∑

α

〈α|0〉b̂†
α

)NB

|vac〉

=
(∑

α,α′
ei(ε0−ωα′ )t 〈0|α〉〈α′|0〉δα,α′

)NB

=
(∑

α

|〈α|0〉|2ei(ε0−ωα )t

)NB

. (D2)

The BEC peak density ρ0 used in comparison of the spectrum
of the Rydberg impurity in a Fermi sea to that in a BEC

To compute Fermi and Bose Rydberg polaron responses,
we must ensure that the same densities at the position of the
impurity are used in the calculation. To this end, for a given
density of fermions in the Fermi gas ρ, we determine the NB

that corresponds to the peak density in the BEC ρ0 at the
center of the trap given by

ρ0 = NB|�BEC|2

= NB

∣∣∣∣∣1

2

√
1

π

√
2

L

sin(πr/L)

r

∣∣∣∣∣
2

r→0

= NB
π

2L3
, (D3)

where we quantized the wave function in a spherical box of
radial extent L. We then use NB = ρ0

2L3

π
in SBEC(t ) [Eq. (D2)]

and choose ρ = ρ0 for the corresponding fermionic system.

APPENDIX E: NUMERICAL PROCEDURES

1. Exact diagonalization of the radial Schrödinger equation

We solve the radial Schrödinger equation (C4) numerically
in a spherical box imposing hard-wall boundary conditions.
The Hamiltonian matrix is constructed in the basis states |r〉
that serve as discrete real-space representation of states in the
continuous radial coordinate r.

The numerical solutions determine the radial wave func-
tions ukα

(r) = 〈r|kα〉 for the interacting states and uks (r) =
〈r|ks〉 for the noninteracting states. The discretization scheme
defines the integration measure

∫
dr = ∑

i �ri , where �ri is
the grid-step size at point ri. Using this integration measure,
we construct normalized wave functions.

2. Construction of overlap matrix C
We construct the matrix Cs′,s(0) in Eq. (C6) in the single-

particle basis that constitutes the spin-polarized Fermi sea
|�FS〉. In this construction, the Fermi energy εF = (6π2ρ)2/3

2m
sets the number k(l )

smax
which determines the uppermost single-

particle state of angular momentum l filled by the Fermi sea.

3. Numerical computation of the time-dependent overlap S(t )

In computing time-dependent overlaps S(t ) we insert a
complete set of interacting states |kα〉, including up to 2 ×
k(l )

smax
states for each angular momentum sector l . To eliminate

remaining truncation errors, we normalize sl (t ) according to
sl (t ) → sl (t )/sl (0) before taking the power to 2l + 1.

4. Fourier transform of S(t )

To stabilize A(ω) against the Gibbs phenomenon when
performing the numerical Fourier transform of S(t ), we im-
pose an exponential decay on the computed S(t ), i.e., S(t ) →
S(t )e−t/tη . This procedure results in absorption peaks in A(ω)
with finite width ∼1/tη.

APPENDIX F: ANALYTICAL DEPENDENCE OF
FRANCK-CONDON OVERLAPS ON THE

ANGULAR MOMENTUM l

We consider Franck-Condon overlaps between the lowest
bound dimer state |1α, l〉 and free states |ks, l〉 of nodal
number ks,

I = 〈1α, l|ks, l〉 =
∫

dr〈1α, l|r〉〈r|ks, l〉

≡
∫

dr u∗
1α,l (r)uks,l (r)

∝
∫

dr jl
(
K(l )

ks
r
)
δ(r − R0)

= jl
(
K(l )

ks
R0

)
, (F1)

where jl (x) is the spherical Bessel function of order l and
argument x. We have inserted a resolution of the identity∫

dr|r〉〈r| ≡ 1 in the first line, used the definitions of the
interacting and noninteracting wave functions in the second
line, and in the third line we have approximated, up to a
constant, the lowest bound state as a δ function. This is
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a reasonable approximation to derive the dependence on l ,
as the dimer wave function is predominantly bound to the
approximately harmonic well at R0 [see Figs. 2 and 6(b)].

The free solutions satisfy the boundary condition

jl (K(l )
ks

R) ≈ sin(K(l )
ks

R−lπ/2)

K(l )
ks

R
= 0 as R → ∞ and for sufficiently

high l . From this follows the solution K(l )
ks

= (n+l/2)π
R with

n ∈ N. We thus find

I ∼ jl

(
π (n + l/2)

R0

R

)
. (F2)

Since R0 � R, we can derive the dependence on l by Taylor
expanding I for small arguments π (n + l/2) R0

R � 1. Ex-
pressing the spherical Bessel functions jl (x) as Bessel func-

tions of the first kind, which can be readily expanded as a
series, we find

I ∼
√

π (πR0/R)l (n + l/2)l 2−1−l

�(l + 3/2)
. (F3)

Further, we simplify the � function using Sterling’s formula
to obtain

I ∼ 1√
2

(
π

R0

R

)l

(n + l/2)l
√

l + 3/2

× 2−1−l

(
l + 3/2

e

)−l−3/2

, (F4)

which shows the leading superexponential dependence on l
discussed in the main text.

[1] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory (Courier,
Chelmsford, 2012).

[2] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(Courier, Chelmsford, 1991).

[3] U. Woggon, Optical Properties of Semiconductor Quantum Dots
(Springer, Berlin, 1997).

[4] A. Gaj, A. T. Krupp, J. B. Balewski, R. Löw, S. Hofferberth,
and T. Pfau, From molecular spectra to a density shift in dense
Rydberg gases, Nat. Commun. 5, 4546 (2014).

[5] M. Schlagmüller, T. C. Liebisch, H. Nguyen, G. Lochead, F.
Engel, F. Böttcher, K. M. Westphal, K. S. Kleinbach, R. Löw, S.
Hofferberth, T. Pfau, J. Pérez-Ríos, and C. H. Greene, Probing
an Electron Scattering Resonance Using Rydberg Molecules
within a Dense and Ultracold Gas, Phys. Rev. Lett. 116, 053001
(2016).

[6] F. Camargo, R. Schmidt, J. D. Whalen, R. Ding, G. Woehl, S.
Yoshida, J. Burgdörfer, F. B. Dunning, H. R. Sadeghpour, E.
Demler, and T. C. Killian, Creation of Rydberg Polarons in a
Bose Gas, Phys. Rev. Lett. 120, 083401 (2018).

[7] L. S. Levitov and G. B. Lesovik, Charge distribution in quantum
shot noise, J. Exp. Theor. Phys. Lett. 58, 230 (1993).

[8] P. W. Anderson, Infrared Catastrophe in Fermi Gases with Local
Scattering Potentials, Phys. Rev. Lett. 18, 1049 (1967).

[9] P. Nozieres and C. T. De Dominicis, Singularities in the x-ray
absorption and emission of metals. III. One-body theory exact
solution, Phys. Rev. 178, 1097 (1969).

[10] R. Schmidt, H. R. Sadeghpour, and E. Demler, Mesoscopic
Rydberg Impurity in an Atomic Quantum Gas, Phys. Rev. Lett.
116, 105302 (2016).

[11] R. Schmidt, J. D. Whalen, R. Ding, F. Camargo, G. Woehl,
S. Yoshida, J. Burgdörfer, F. B. Dunning, E. Demler, H. R.
Sadeghpour, and T. C. Killian, Theory of excitation of Rydberg
polarons in an atomic quantum gas, Phys. Rev. A 97, 022707
(2018).

[12] E. Fermi, Sopra lo spostamento per pressione delle righe elevate
delle serie spettrali, Nuovo Cimento 11, 157 (1934).

[13] M. Marinescu, H. R. Sadeghpour, and A. Dalgarno, Dispersion
coefficients for alkali-metal dimers, Phys. Rev. A 49, 982
(1994).

[14] C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, Creation
of Polar and Nonpolar Ultra-Long-Range Rydberg Molecules,
Phys. Rev. Lett. 85, 2458 (2000).

[15] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[16] I. C. H. Liu and J. M. Rost, Polyatomic molecules formed with
a Rydberg atom in an ultracold environment, Eur. Phys. J. D 40,
65 (2006).

[17] V. Bendkowsky, B. Butscher, J. Nipper, J. B. Balewski, J. P.
Shaffer, R. Löw, T. Pfau, W. Li, J. Stanojevic, T. Pohl, and J. M.
Rost, Rydberg Trimers and Excited Dimers Bound by Internal
Quantum Reflection, Phys. Rev. Lett. 105, 163201 (2010).

[18] D. Booth, S. T. Rittenhouse, J. Yang, H. R. Sadeghpour, and
J. P. Shaffer, Production of trilobite Rydberg molecule dimers
with kilo-Debye permanent electric dipole moments, Science
348, 99 (2015).

[19] B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, H. R.
Sadeghpour, S. Yoshida, and J. Burgdörfer, Ultra-long-range
Rydberg molecules in a divalent atomic system, Phys. Rev. A
92, 031403(R) (2015).

[20] J. A. Fernández, P. Schmelcher, and R. González-Férez,
Ultralong-range triatomic Rydberg molecules in an electric
field, J. Phys. B 49, 124002 (2016).

[21] J. P. Shaffer, S. T. Rittenhouse, and H. R. Sadeghpour, Ultracold
Rydberg molecules, Nat. Commun. 9, 1965 (2018).

[22] C. Fey, J. Yang, S. T. Rittenhouse, F. Munkes, M. Baluktsian,
P. Schmelcher, H. R. Sadeghpour, and J. P. Shaffer, Effective
Three-Body Interactions in Cs(6s)−Cs(nd ) Rydberg Trimers,
Phys. Rev. Lett. 122, 103001 (2019).

[23] G. D. Mahan, Many-Particle Physics (Springer Science +
Business Media, New York, 2013).

[24] M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D. A.
Abanin, and E. Demler, Time-Dependent Impurity in Ultracold
Fermions: Orthogonality Catastrophe and Beyond, Phys. Rev.
X 2, 041020 (2012).

[25] R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina, and
E. Demler, Universal many-body response of heavy impurities
coupled to a Fermi sea: A review of recent progress, Rep. Prog.
Phys. 81, 024401 (2018).

[26] J. Goold, T. Fogarty, N. Lo Gullo, M. Paternostro, and T. Busch,
Orthogonality catastrophe as a consequence of qubit embedding
in an ultracold Fermi gas, Phys. Rev. A 84, 063632 (2011).

[27] M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. M. Walraven, R.
Grimm, J. Levinsen, M. M. Parish, R. Schmidt, M. Knap, and
E. Demler, Ultrafast many-body interferometry of impurities
coupled to a Fermi sea, Science 354, 96 (2016).

023021-12

https://doi.org/10.1038/ncomms5546
https://doi.org/10.1038/ncomms5546
https://doi.org/10.1038/ncomms5546
https://doi.org/10.1038/ncomms5546
https://doi.org/10.1103/PhysRevLett.116.053001
https://doi.org/10.1103/PhysRevLett.116.053001
https://doi.org/10.1103/PhysRevLett.116.053001
https://doi.org/10.1103/PhysRevLett.116.053001
https://doi.org/10.1103/PhysRevLett.120.083401
https://doi.org/10.1103/PhysRevLett.120.083401
https://doi.org/10.1103/PhysRevLett.120.083401
https://doi.org/10.1103/PhysRevLett.120.083401
https://doi.org/10.1103/PhysRevLett.18.1049
https://doi.org/10.1103/PhysRevLett.18.1049
https://doi.org/10.1103/PhysRevLett.18.1049
https://doi.org/10.1103/PhysRevLett.18.1049
https://doi.org/10.1103/PhysRev.178.1097
https://doi.org/10.1103/PhysRev.178.1097
https://doi.org/10.1103/PhysRev.178.1097
https://doi.org/10.1103/PhysRev.178.1097
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1103/PhysRevA.97.022707
https://doi.org/10.1103/PhysRevA.97.022707
https://doi.org/10.1103/PhysRevA.97.022707
https://doi.org/10.1103/PhysRevA.97.022707
https://doi.org/10.1007/BF02959829
https://doi.org/10.1007/BF02959829
https://doi.org/10.1007/BF02959829
https://doi.org/10.1007/BF02959829
https://doi.org/10.1103/PhysRevA.49.982
https://doi.org/10.1103/PhysRevA.49.982
https://doi.org/10.1103/PhysRevA.49.982
https://doi.org/10.1103/PhysRevA.49.982
https://doi.org/10.1103/PhysRevLett.85.2458
https://doi.org/10.1103/PhysRevLett.85.2458
https://doi.org/10.1103/PhysRevLett.85.2458
https://doi.org/10.1103/PhysRevLett.85.2458
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1140/epjd/e2006-00098-x
https://doi.org/10.1140/epjd/e2006-00098-x
https://doi.org/10.1140/epjd/e2006-00098-x
https://doi.org/10.1140/epjd/e2006-00098-x
https://doi.org/10.1103/PhysRevLett.105.163201
https://doi.org/10.1103/PhysRevLett.105.163201
https://doi.org/10.1103/PhysRevLett.105.163201
https://doi.org/10.1103/PhysRevLett.105.163201
https://doi.org/10.1126/science.1260722
https://doi.org/10.1126/science.1260722
https://doi.org/10.1126/science.1260722
https://doi.org/10.1126/science.1260722
https://doi.org/10.1103/PhysRevA.92.031403
https://doi.org/10.1103/PhysRevA.92.031403
https://doi.org/10.1103/PhysRevA.92.031403
https://doi.org/10.1103/PhysRevA.92.031403
https://doi.org/10.1088/0953-4075/49/12/124002
https://doi.org/10.1088/0953-4075/49/12/124002
https://doi.org/10.1088/0953-4075/49/12/124002
https://doi.org/10.1088/0953-4075/49/12/124002
https://doi.org/10.1038/s41467-018-04135-6
https://doi.org/10.1038/s41467-018-04135-6
https://doi.org/10.1038/s41467-018-04135-6
https://doi.org/10.1038/s41467-018-04135-6
https://doi.org/10.1103/PhysRevLett.122.103001
https://doi.org/10.1103/PhysRevLett.122.103001
https://doi.org/10.1103/PhysRevLett.122.103001
https://doi.org/10.1103/PhysRevLett.122.103001
https://doi.org/10.1103/PhysRevX.2.041020
https://doi.org/10.1103/PhysRevX.2.041020
https://doi.org/10.1103/PhysRevX.2.041020
https://doi.org/10.1103/PhysRevX.2.041020
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/10.1103/PhysRevA.84.063632
https://doi.org/10.1103/PhysRevA.84.063632
https://doi.org/10.1103/PhysRevA.84.063632
https://doi.org/10.1103/PhysRevA.84.063632
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.1126/science.aaf5134


RYDBERG IMPURITY IN A FERMI GAS: QUANTUM … PHYSICAL REVIEW RESEARCH 2, 023021 (2020)

[28] F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Amico, A.
Burchianti, C. Fort, M. Inguscio, M. Zaccanti, and G. Roati,
Repulsive Fermi Polarons in a Resonant Mixture of Ultracold
6Li Atoms, Phys. Rev. Lett. 118, 083602 (2017).

[29] M. M. Parish and J. Levinsen, Quantum dynamics of impurities
coupled to a Fermi sea, Phys. Rev. B 94, 184303 (2016).

[30] S. I. Mistakidis, G. C. Katsimiga, G. M. Koutentakis, and
P. Schmelcher, Repulsive Fermi polarons and their induced
interactions in binary mixtures of ultracold atoms, New J. Phys.
21, 043032 (2019).

[31] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein,
Observation of Fermi Polarons in a Tunable Fermi Liquid of
Ultracold Atoms, Phys. Rev. Lett. 102, 230402 (2009).

[32] M. Koschorreck, D. Pertot, E. Vogt, B. Fröhlich, M. Feld,
and M. Köhl, Attractive and repulsive Fermi polarons in two
dimensions, Nature (London) 485, 619 (2012).

[33] C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P.
Massignan, G. M. Bruun, F. Schreck, and R. Grimm, Metasta-
bility and coherence of repulsive polarons in a strongly interact-
ing Fermi mixture, Nature (London) 485, 615 (2012).

[34] Y. Zhang, W. Ong, I. Arakelyan, and J. E. Thomas, Polaron-
to-Polaron Transitions in the Radio-Frequency Spectrum of
a Quasi-Two-Dimensional Fermi Gas, Phys. Rev. Lett. 108,
235302 (2012).

[35] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Weakly
Bound Dimers of Fermionic Atoms, Phys. Rev. Lett. 93, 090404
(2004).

[36] C. A. Regal, M. Greiner, and D. S. Jin, Observation of Reso-
nance Condensation of Fermionic Atom Pairs, Phys. Rev. Lett.
92, 040403 (2004).

[37] F. Chevy, Universal phase diagram of a strongly interacting
Fermi gas with unbalanced spin populations, Phys. Rev. A 74,
063628 (2006).

[38] Z.-Y. Shi, S. M. Yoshida, M. M. Parish, and J. Levinsen,
Impurity-Induced Multibody Resonances in a Bose Gas, Phys.
Rev. Lett. 121, 243401 (2018).

[39] R. Schmidt and S. Moroz, Renormalization-group study of the
four-body problem, Phys. Rev. A 81, 052709 (2010).

[40] G. M. Bruun and P. Massignan, Decay of Polarons and
Molecules in a Strongly Polarized Fermi Gas, Phys. Rev. Lett.
105, 020403 (2010).

[41] M. Berciu, Few-particle Green’s Functions for Strongly Corre-
lated Systems on Infinite Lattices, Phys. Rev. Lett. 107, 246403
(2011).

[42] J. Sous, M. Chakraborty, R. V. Krems, and M. Berciu, Light
Bipolarons Stabilized by Peierls Electron-Phonon Coupling,
Phys. Rev. Lett. 121, 247001 (2018).

[43] M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A.
Cornell, and D. S. Jin, Bose Polarons in the Strongly Interacting
Regime, Phys. Rev. Lett. 117, 055301 (2016).

[44] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish,
J. Levinsen, R. S. Christensen, G. M. Bruun, and J. J.

Arlt, Observation of Attractive and Repulsive Polarons in
a Bose-Einstein Condensate, Phys. Rev. Lett. 117, 055302
(2016).

[45] Z. Z. Yan, Y. Ni, C. Robens, and M. W. Zwierlein, Bose
polarons near quantum criticality, arXiv:1904.02685.

[46] M. Cardona and Y. Y. Peter, Fundamentals of Semiconductors
(Springer, Berlin, 2005).

[47] A. K. Geim, P. C. Main, N. La Scala, L. Eaves, T. J. Foster,
P. H. Beton, J. W. Sakai, F. W. Sheard, M. Henini, G. Hill,
and M. A. Pate, Fermi-Edge Singularity in Resonant Tunneling,
Phys. Rev. Lett. 72, 2061 (1994).

[48] Y. N. Khanin and E. E. Vdovin, Magnetic-field-induced singu-
larity in the tunneling current through an InAs quantum dot,
J. Exp. Theor. Phys. Lett. 81, 267 (2005).

[49] M. Rüth, T. Slobodskyy, C. Gould, G. Schmidt, and L. W.
Molenkamp, Fermi edge singularity in II–VI semiconductor
resonant tunneling structures, Appl. Phys. Lett. 93, 182104
(2008).

[50] A. Rosch and T. Kopp, Heavy Particle in a d-Dimensional
Fermionic Bath: A Strong Coupling Approach, Phys. Rev. Lett.
75, 1988 (1995).

[51] M. Zwierlein (private communication).
[52] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner,

E. Demler, and A. Imamoglu, Fermi polaron-polaritons in
charge-tunable atomically thin semiconductors, Nat. Phys. 13,
255 (2016).

[53] Y.-W. Chang and D. R. Reichman, Many-body theory of optical
absorption in doped two-dimensional semiconductors, Phys.
Rev. B 99, 125421 (2019).

[54] J. D. Whalen, S. K. Kanungo, R. Ding, M. Wagner, R. Schmidt,
H. R. Sadeghpour, S. Yoshida, J. Burgdörfer, F. B. Dunning, and
T. C. Killian, Probing nonlocal spatial correlations in quantum
gases with ultra-long-range Rydberg molecules, Phys. Rev. A
100, 011402(R) (2019).

[55] Y. Kagan and N. V. Prokof’ev, Electronic polaron effect and
quantum diffusion of heavy particle in metal, Zh. Eksp. Teor.
Fiz. 90, 2176 (1986).

[56] M. Punk, P. T. Dumitrescu, and W. Zwerger, Polaron-to-
molecule transition in a strongly imbalanced Fermi gas, Phys.
Rev. A 80, 053605 (2009).

[57] R. Schmidt and T. Enss, Excitation spectra and rf re-
sponse near the polaron-to-molecule transition from the func-
tional renormalization group, Phys. Rev. A 83, 063620
(2011).

[58] I. Klich, Full Counting Statistics: An Elementary Derivation of
Levitov’s Formula (Kluwer, Dordrecht, 2003), pp. 397–402.

[59] L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting
statistics and coherent states of electric current, J. Math. Phys.
37, 4845 (1996).

[60] K. Schönhammer, Full counting statistics for noninteracting
fermions: Exact results and the Levitov-Lesovik formula, Phys.
Rev. B 75, 205329 (2007).

023021-13

https://doi.org/10.1103/PhysRevLett.118.083602
https://doi.org/10.1103/PhysRevLett.118.083602
https://doi.org/10.1103/PhysRevLett.118.083602
https://doi.org/10.1103/PhysRevLett.118.083602
https://doi.org/10.1103/PhysRevB.94.184303
https://doi.org/10.1103/PhysRevB.94.184303
https://doi.org/10.1103/PhysRevB.94.184303
https://doi.org/10.1103/PhysRevB.94.184303
https://doi.org/10.1088/1367-2630/ab1045
https://doi.org/10.1088/1367-2630/ab1045
https://doi.org/10.1088/1367-2630/ab1045
https://doi.org/10.1088/1367-2630/ab1045
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1038/nature11151
https://doi.org/10.1038/nature11151
https://doi.org/10.1038/nature11151
https://doi.org/10.1038/nature11151
https://doi.org/10.1038/nature11065
https://doi.org/10.1038/nature11065
https://doi.org/10.1038/nature11065
https://doi.org/10.1038/nature11065
https://doi.org/10.1103/PhysRevLett.108.235302
https://doi.org/10.1103/PhysRevLett.108.235302
https://doi.org/10.1103/PhysRevLett.108.235302
https://doi.org/10.1103/PhysRevLett.108.235302
https://doi.org/10.1103/PhysRevLett.93.090404
https://doi.org/10.1103/PhysRevLett.93.090404
https://doi.org/10.1103/PhysRevLett.93.090404
https://doi.org/10.1103/PhysRevLett.93.090404
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevA.74.063628
https://doi.org/10.1103/PhysRevA.74.063628
https://doi.org/10.1103/PhysRevA.74.063628
https://doi.org/10.1103/PhysRevA.74.063628
https://doi.org/10.1103/PhysRevLett.121.243401
https://doi.org/10.1103/PhysRevLett.121.243401
https://doi.org/10.1103/PhysRevLett.121.243401
https://doi.org/10.1103/PhysRevLett.121.243401
https://doi.org/10.1103/PhysRevA.81.052709
https://doi.org/10.1103/PhysRevA.81.052709
https://doi.org/10.1103/PhysRevA.81.052709
https://doi.org/10.1103/PhysRevA.81.052709
https://doi.org/10.1103/PhysRevLett.105.020403
https://doi.org/10.1103/PhysRevLett.105.020403
https://doi.org/10.1103/PhysRevLett.105.020403
https://doi.org/10.1103/PhysRevLett.105.020403
https://doi.org/10.1103/PhysRevLett.107.246403
https://doi.org/10.1103/PhysRevLett.107.246403
https://doi.org/10.1103/PhysRevLett.107.246403
https://doi.org/10.1103/PhysRevLett.107.246403
https://doi.org/10.1103/PhysRevLett.121.247001
https://doi.org/10.1103/PhysRevLett.121.247001
https://doi.org/10.1103/PhysRevLett.121.247001
https://doi.org/10.1103/PhysRevLett.121.247001
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055302
http://arxiv.org/abs/arXiv:1904.02685
https://doi.org/10.1103/PhysRevLett.72.2061
https://doi.org/10.1103/PhysRevLett.72.2061
https://doi.org/10.1103/PhysRevLett.72.2061
https://doi.org/10.1103/PhysRevLett.72.2061
https://doi.org/10.1134/1.1931013
https://doi.org/10.1134/1.1931013
https://doi.org/10.1134/1.1931013
https://doi.org/10.1134/1.1931013
https://doi.org/10.1063/1.3009284
https://doi.org/10.1063/1.3009284
https://doi.org/10.1063/1.3009284
https://doi.org/10.1063/1.3009284
https://doi.org/10.1103/PhysRevLett.75.1988
https://doi.org/10.1103/PhysRevLett.75.1988
https://doi.org/10.1103/PhysRevLett.75.1988
https://doi.org/10.1103/PhysRevLett.75.1988
https://doi.org/10.1038/nphys3949
https://doi.org/10.1038/nphys3949
https://doi.org/10.1038/nphys3949
https://doi.org/10.1038/nphys3949
https://doi.org/10.1103/PhysRevB.99.125421
https://doi.org/10.1103/PhysRevB.99.125421
https://doi.org/10.1103/PhysRevB.99.125421
https://doi.org/10.1103/PhysRevB.99.125421
https://doi.org/10.1103/PhysRevA.100.011402
https://doi.org/10.1103/PhysRevA.100.011402
https://doi.org/10.1103/PhysRevA.100.011402
https://doi.org/10.1103/PhysRevA.100.011402
https://doi.org/10.1103/PhysRevA.80.053605
https://doi.org/10.1103/PhysRevA.80.053605
https://doi.org/10.1103/PhysRevA.80.053605
https://doi.org/10.1103/PhysRevA.80.053605
https://doi.org/10.1103/PhysRevA.83.063620
https://doi.org/10.1103/PhysRevA.83.063620
https://doi.org/10.1103/PhysRevA.83.063620
https://doi.org/10.1103/PhysRevA.83.063620
https://doi.org/10.1063/1.531672
https://doi.org/10.1063/1.531672
https://doi.org/10.1063/1.531672
https://doi.org/10.1063/1.531672
https://doi.org/10.1103/PhysRevB.75.205329
https://doi.org/10.1103/PhysRevB.75.205329
https://doi.org/10.1103/PhysRevB.75.205329
https://doi.org/10.1103/PhysRevB.75.205329

