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We argue that the quenched ultracold plasma presents an experimental platform for studying the
quantum many-body physics of disordered systems in the long-time and finite energy-density limits. We
consider an experiment that quenches a plasma of nitric oxide to an ultracold system of Rydberg molecules,
ions, and electrons that exhibits a long-lived state of arrested relaxation. The qualitative features of this state
fail to conform with classical models. Here, we develop a microscopic quantum description for the arrested
phase based on an effective many-body spin Hamiltonian that includes both dipole-dipole and van der
Waals interactions. This effective model appears to offer a way to envision the essential quantum disordered
nonequilibrium physics of this system.
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Introduction.—Quantum mechanics serves well to
describe the discrete low-energy dynamics of isolated
microscopic many-body systems [1]. The macroscopic
world conforms with the laws of Newtonian mechanics
[2]. Quantum statistical mechanics [3] bridges these realms
by treating the quantum mechanical properties of an
ensemble of particles statistically and characterizing the
properties of the system in terms of state properties
(temperature, chemical potential, etc.), in an approach that
implies a complex phase space of trajectories with ergodic
dynamics [4]. However, this is not always the case, and the
macroscopic description of quantum many-body systems
that fail to behave as expected statistically remains today as
a key unsolved problem [5,6].
Ergodicity, when present in an isolated quantum many-

body system, emerges as the system thermalizes in a unitary
evolution that spreads information among all the subspaces
of the system. The subspaces act as thermal reservoirs for
each other. Most known many-body systems thermalize in
this fashion, obeying the eigenstate thermalization hypoth-
esis [4,6–10], which holds that the eigenstates of corre-
sponding many-body Hamiltonians are thermal.
Exceptions include fine-tuned integrable systems [11],

and the class of so-called many-body localized systems
[6,12], which have attracted intense interest in recent years.
Such systems do not thermalize at finite energy densities
and are therefore nonergodic. Disorder in a landscape of
interactions preserves memory of the initial local condi-
tions for infinitely long times. Many-body localized phases
cannot be understood in terms of conventional quantum
statistical mechanics [13,14].
Many-body localization has been observed in deliber-

ately engineered experimental systems with ultracold atoms

in one- and two-dimensional optical lattices [15–20]. In
such cases, tuning of the lattice parameters allows inves-
tigation of the phase diagram of the system as a function of
disorder strength. However, such ultracold systems suffer
from decoherence, confining localization to short time
scales and low energy densities.
It is important to determine experimentally whether

conditions exist under which many-body localization can
persist for long times at finite temperatures, and to under-
stand if such a robust macroscopic quantum many-body
state can occur naturally in an interacting quantum system
without deliberate tuning of experimental parameters. Such
a realization could pave the way to exotic quantum effects,
such as entangled macroscopic objects and localization-
protected quantum order [21,22], which could have societal
and technological implications [23].
Motivated by these questions, we have explored the

quenched ultracold molecular plasma as an arena in which
to study quantum many-body effects in the long-time and
finite energy-density limits [24,25]. The ultracold plasma
system offers complexity, as encountered in quantum
materials, but evolves from state-selected initial conditions
that allow for a description in terms of a specific set of
atomic and molecular degrees of freedom.
Experimental work has recently established laboratory

conditions under which a high-density molecular ultracold
plasma evolves from a cold Rydberg gas of nitric oxide,
adiabatically sequesters energy in a reservoir of global
mass transport, and relaxes to form a spatially correlated,
strongly coupled plasma [25,26]. This system naturally
evolves to form an arrested phase that has a long lifetime
with respect to recombination and neutral dissociation, and
a very slow rate of free expansion. These volumes exhibit
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state properties that are independent of the initial quantum
state and density, parameters that critically affect the time
scale of relaxation, suggesting a robust process of self-
assembly that reaches an arrested state, far from conven-
tional thermal equilibrium.
Departure from classical models suggests localization in

the disposition of energy [25]. In an effort to explain this
state of arrested relaxation, we have developed a quantum
mechanical description of the system in terms of a power
law interacting spin model, which allows for the possibility
of slow dynamics or many-body localization.
Experiment.—The double-resonant pulsed-laser excita-

tion of nitric oxide entrained in a supersonic molecular
beam forms a characteristic Gaussian ellipsoid volume of
state-selected Rydberg gas that propagates in z with a well-
defined velocity, longitudinal temperature (T jj ¼ 500 mK),
transverse temperature (T⊥ < 5 mK), and precisely known
initial density in a range from ρ0 ¼ 1010 to 1012 cm−3 (see
Fig. 1 and Refs. [27,28]).
Rydberg molecules in the leading edge of the nearest-

neighbor distance distribution interact to produce NOþ ions
and free electrons [49]. Electron–Rydberg molecule colli-
sions trigger an ionization avalanche on a time scale from
nanoseconds to microseconds depending on initial density
and principal quantum number n0.
Inelastic collisions heat electrons and the system proceeds

to a quasiequilibrium of ions, electrons, and high-Rydberg
molecules of nitric oxide. This relaxation and the transient
state it produces entirely parallels the many observations of
ultracold plasma evolution in atomic systems under the
conditions of a magneto-optical trap [50].
We see this avalanche unfold directly in sequences of

density-classified selective field ionization spectra measured
as a function of delay after the initial formation of the
Rydberg gas [25]. For a moderate ρ0 ¼ 3 × 1011 cm−3, the
ramp-field signal of the selected Rydberg state, n0 gives way
on a 100 ns time scale to form the selective field ionization
spectrum of a system in which electrons bind very weakly to
single ions in a narrow distribution of high Rydberg states or
in a quasifree state held by the plasma space charge [28].
The peak density of the plasma decays for as much as

10 μs until it reaches a value of ∼4 × 1010 cm−3, indepen-
dent of the initially selected n0 and ρ0. Thereafter, the
number of charged particles remains constant for at least a
millisecond. On this hydrodynamic time scale, the plasma
bifurcates, disposing substantial energy in the relative
velocity of plasma volumes separating in #x, the cross-
beam axis of laser propagation [26].
The avalanche to plasma proceeds at a rate predicted

with accuracy by semiclassical coupled rate equations
[25,28]. This picture also calls for the rapid collisional
relaxation of Rydberg molecules, accompanied by an
increase in the electron temperature to 60 K or more.
Bifurcation accounts for a loss of electron energy. But the
volumes that remain cease to evolve, quenching instead to

form an arrested phase that expands slowly, at a rate
reflecting an initial electron temperature no higher than a
few degrees kelvin. These volumes show no sign of loss
owing to the fast dissociative recombination of NOþ ions
with electrons predicted classically for low Te [51], or
predissociation of NO Rydberg molecules, well known to
occur with relaxation in n [52].
Thus, from the experiment, we learn that 5 μs after

avalanche begins, Rydberg relaxation ceases. We detect no
sign of ion acceleration by hot electrons and the surviving
number of ions and electrons remains constant for the
entire remaining observation period, extending to as long as
1 ms. With the vast phase space available to energized
electrons and neutral nitrogen and oxygen atom fragments,
this persistent localization of energy in the electrostatic
separation of cold ions and electrons represents a very
significant departure from a thermalized phase. Current
experimental evidence thus points strongly to energy
localization and the absence of thermalization within the
accessible time of the experiment.
Molecular physics of the arrested phase.—Direct mea-

surements of its electron binding energy together with its
observed expansion rate establish experimentally that the
bifurcated plasma contains only high-Rydberg molecules
(n > 80) and NOþ ions in combination with cold electrons
(initial Te < 5 K) bound by the space charge. As noted
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FIG. 1. (a) Double-resonant selection of the initial quantum
state of the n0fð2Þ Rydberg gas. (b) Laser-crossed differentially
pumped supersonic molecular beam. (c) Selective field ionization
spectrum after a 500 ns evolution, showing the signal of weakly
bound electrons combined with a residual population of 49fð2Þ
Rydberg molecules. After 10 μs, this population sharpens to
signal only high-n Rydberg molecules and plasma electrons.
(d) Integrated electron signal as a function of evolution time from
0 to 160 μs. Note the onset of the arrested phase before 10 μs.
Time scale compressed by a factor of 2 after 80 μs. (e) x, y-
integrated images recorded after a flight time of 400 μs with
n0 ¼ 40 for initial Rydberg gas peak densities varying from
2 × 1011 to 1 × 1012 cm−3. All of these images exhibit the same
peak density: 1 × 107 cm−3.
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above, semiclassical models mixing these species in any
proportion predict thermal relaxation, electron heating,
expansion, and dissipation on a rapid time scale with very
evident consequences completely unobserved in the experi-
ment. Instead, beyond an evolution time of 10 μs or less,
we find that the plasma settles in a state of arrested
relaxation of canonical density and low internal energy
manifested by a slow free expansion.
To describe this apparent state of suppressed relaxation,

we proceed now to develop a formal representation of the
predominant interactions in this arrested phase. Under
the evidently cold, quasineutral conditions of the relaxed
plasma, ions pair with extravalent electrons to form dipoles
that interact as represented schematically in Fig. 2.
Assuming an intermolecular spacing that exceeds the

dimensions of individual ion-electron separations, we can
describe the Coulomb interactions represented in Fig. 2 in
terms of a simple Hamiltonian:

H ¼
X

i

!
P2
i

2m
þ hi

"
þ
X

i;j

Vij; ð1Þ

where hi describes the local relationship of each electron
with its proximal NOþ core. This local representation
extends to account for the interactions of a bound extrav-
alent electron with vibrational, rotational, and electronic
degrees of freedom of the core, as described, for example,
by multichannel quantum defect theory [53]. Each ion-
electron pair has momentum Pi and Vij ≡ Vðri − rjÞ
describes the potential energy of the interacting multipoles,
represented in Fig. 2 to lowest order as induced dipoles
with an interaction defined by Vdd

ij ¼ ½di · dj − 3ðdi · rijÞ
ðdj · rijÞ'/r3ij, where for simplicity we average over the
anisotropy of the dipole-dipole interaction.
The plasma also very likely includes ion-electron pairs of

positive total energy. This implies the existence of local
Hamiltonians of much greater complexity that define quasi-
Rydberg bound states with dipole and higher-order
moments formed by the interaction of an extravalent
electron with more than one ion.

Representing the eigenstates of hi by jeii, we can write a
reduced Hamiltonian for the pairwise dipole-dipole inter-
actions [54,55] in the arrested phase:

H dd ¼
X

i

P2
i

2m
þ
X

i;j

Vdd
ij ; ð2Þ

where we evaluate Vdd
ij in the jeii basis.

Note that such a Hamiltonian usually refers to the case
where a narrow bandwidth laser prepares a Rydberg gas in
which a particular set of dipole-dipole interactions gives
rise to a small, specific set of coupled states [56–58]. By
contrast, the molecular ultracold plasma forms spontane-
ously by the processes of avalanche and quench to populate
a great many different states that evolve spatially without
the requirement of light-matter coherence or reference to a
dipole blockade of any kind.
This system relaxes to a quenched regime of ultracold

temperature, from which it expands radially at a rate of a
few meters per second. Dipolar energy interactions proceed
on a much faster time scale [59–62]. Cross sections for
close-coupled collisions are minuscule by comparison [63].
We can thus assume that the coupled states defined by
dipole-dipole interactions evolve adiabatically with the
motion of ion centers.
This separation of time scales enables us to write an

effective Hamiltonian describing pairwise interactions that
slowly evolve in an instantaneous frame of slowly moving
ions and Rydberg molecules: H eff ¼ P

P
i;jV

dd
ij , where P

represents a projector onto the low-energy degrees of
freedom owing to dipole-dipole coupling.
Effective many-body Hamiltonian.—Considering pair-

wise dipolar interactions between ion-electron pairs, we
choose a set of basis states je1i, je2i;…, jeLi that spans the
low-energy regime. The superscript with the lower (higher)
integer label refers to the state with larger (smaller) electron
binding energy.
Quenching gives rise to a vast distribution of rare

resonant pairwise interactions, creating a random potential
landscape. Dipole-dipole interactions in this dense mani-
fold of basis states cause excitation exchange. In the
disorder potential, these processes are dominated by low
energy-excitations involving L states in number, where we
expect L to be small (from 2 to 4). The most probable
interactions select L-level systems composed of different
basis states from dipole to dipole.
In a limit of dipole-dipole coupling, we can represent

pairwise excitations by spins with energies ϵi and exchange
interactions governed by an XY model Hamiltonian [28,64]
that describes these interactions in terms of their effective
spin dynamics:

H eff ¼
X

i

ϵiŜ
z
i þ

X

i;j

JijðŜþi Ŝ−j þ H:c:Þ; ð3Þ

NO +

NO
+

e-

e-

rij
di

dj

FIG. 2. Schematic representation of NOþ core ions, paired with
extravalent electrons to form interacting dipoles di and dj,
separated by rij ¼ ri − rj.
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where Ŝ in each case denotes a spin-L operator defined as
Ŝγ ¼ ℏσ̂γ/2, for which σγ is the corresponding spin-L Pauli
matrix that spans the space of the L active levels and
γ ¼ x, y, or z. H.c. refers to the Hermitian conjugate.
This Hamiltonian reflects both the diagonal and off-

diagonal disorder created by the variation in L-level system
from dipole to dipole. The first term in H eff describes the
diagonal disorder arising from random contributions to the
on-site energy of any particular dipole owing to its random
local environment. In spin language,

P
iϵiŜ

z
i represents a

Gaussian-distributed random local field of width W.
The representative selective field ionization spectrum in
Fig. 1 directly gauges a W of ∼500 GHz for the quenched
ultracold plasma.
In the second term, Jij ¼ tij/r3ij determines the off-

diagonal disordered amplitudes of the spin flip-flops. To
visualize the associated disorder, recognize that the second
term varies as tij ∝ jdijjdjj, where every interaction selects
a different di and dj. Over the present range ofW, a simple
pair of dipoles formed by s and p Rydberg states of the
same n couple with a tij of 75 GHz μm3 [65]. Note that tij
falls exponentially with the difference in principal quantum
numbers, Δnij [66].
Induced Ising interactions.—In the limit jJijj ≪ W most

appropriate to the experiment, sequences of interactions
can add an Ising term that describes a van der Waals shift
of pairs of dipoles [28,67]. These processes occur with an
amplitude Uij ≈J2ijJ̃/W

2, where J̃ estimates Jij, for an
average value of tij at an average distance separating the
spins. Uij is inherently random owing to the randomness
in Jij.
Together, these results lead us to a general spin model

with dipole-dipole and van der Waals interactions [28]:

H eff ¼
X

i

ϵiŜ
z
i þ

X

i;j

JijðŜþi Ŝ−j þ H:c:Þ þ
X

i;j

UijŜ
z
i Ŝ

z
j;

ð4Þ

where Uij ¼ D ij/r6ij and D ij ¼ t2ijJ̃/W
2.

Discussion: localization versus glassy behavior and
slow dynamics.—The complexity of this Hamiltonian
places an exact solution of Eq. (4) beyond reach for the
conditions of the plasma. But we can gauge some likely
properties of such a solution by analogy to published work
on simpler systems.
In the single-spin limit, this Hamiltonian reduces to

the dipolar XY model, which has been studied by locator
expansion methods measuring the probability of resonant
pairs [68,69]. When Jij scales by a power law α that equals
the dimension d, a single-spin model with diagonal dis-
order displays critical behavior characterized by extended
states with subdiffusive dynamics [68,69]. Dipolar systems
in three dimensions can form extended states, but yet
exhibit nonergodic behavior [70].

Off-diagonal disorder in the presence of long-range spin
flip-flop interactions of arbitrary order in one dimension
yields algebraic localization as opposed to exponential
Anderson localization, challenging the generality of the
rule that says systems must delocalize for α ≤d [71].
The many-body problem is more involved, because the

van der Waals term forms off-diagonal matrix elements
in the resonant pair states [72]. This mechanism couples
distant resonant pairs, transferring energy from one pair to
the other to cause delocalization. A study of power-law
coupled systems predicts that spin flip-flops (order α) and
spin Ising interactions (order β) in an iterated pair con-
figuration in which β ≤α will localize for β/2 > d [73].
A locator expansion approach developed for β > α

applied to Eq. (4) confined to diagonal disorder predicts
a critical dimension dc ¼ 2 [67]. For the case of d > dc,
this theory holds that a diverging number of resonances
drives delocalization whenever the number of dipoles
exceeds a critical value Nc.
A system described by Eq. (4) for the conditions under

which we observe arrest requires a number of dipoles
Nc ¼ ðW/J̃Þ4 ≈3 × 109 to delocalize [28]. This theoretical
threshold deemed necessary for resonance delocalization
exceeds the number of molecules found experimentally in
the quenched ultracold plasma by more than an order of
magnitude [28].
Moreover, as Nandkishore and Sondhi have pointed out

[74], locator expansion arguments might not hold gener-
ally, and low-order power law interactions could well give
rise to many-body localization in higher dimensions. Their
arguments build on the idea that, in many systems, long-
range interactions can drive a system to form correlated
phases in which emergent short-range interactions can be
well characterized by a locator expansion perturbation
theory approach. In this context, many-body localization
with long-range interactions in higher dimensions becomes
quite possible.
A related study has investigated the behavior of a three-

dimensional dipolar system of nitrogen-vacancy color
centers in diamond in the presence of on-site disorder
[75]. The experimental results point to slow dynamics
consistent with our observations.
The forgoing analysis suggests that the model defined by

Eq. (4) ought to exhibit some form of localization or at least
very slow dynamics, since all the terms in the Hamiltonian
are disordered and the terms responsible for delocalization
(Jij and Uij) are expected to be much smaller thanW. This
seems to be what we see in the experiment.
Concluding remarks.—This work has argued that the

quenched ultracold plasma forms an arrested phase pos-
sibly governed by quantum disordered nonequilibrium
physics in long-time and finite energy-density limits. In
an effort to support this notion, we have suggested that the
evident and certainly present quantum dipolar interactions
can be usefully described by a disordered spin model and
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have analyzed its properties in the limit of strong on-site
disorder by analogy with theoretical results for simpler
dipolar systems.
Considering the challenge of scale confronting the

accurate numerical solution of large disordered problems
and the apparent contradiction of available theoretical
results [76–79], experimental systems stand to play an
important role in understanding localization and slow
dynamics. The results presented here call in particular
for further experimental and theoretical efforts to probe the
physics of localization in long-range interacting systems of
higher dimension. The quenched ultracold plasma appears
to offer a view of large-scale quantum dynamics in a regime
inaccessible to optical lattices and solid-state materials.
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I. DOUBLE-RESONANT PRODUCTION OF A
STATE SELECTED MOLECULAR RYDBERG

GAS

Laser pulses, !1 and !2, cross a molecular beam to
define a Gaussian ellipsoidal volume in which a sequence
of resonant electronic transitions transfer population
from the X 2⇧1/2 ground state of nitric oxide to an
intermediate state, A 2⌃+ with angular momentum
neglecting spin, N

0 = 0, and then to a specified level
in the mixed n0f(2) Rydberg series to create a state-
selected Rydberg gas of nitric oxide, in which quantities
(0) and (2) refer to rotational quantum numbers of the
NO+ 1⌃+ cation core.

The intensity of !1 determines the density of Rydberg
molecules formed by saturated absorption of !2. For a
given !1 intensity, the peak Rydberg gas density varies
with !1 � !2 delay according to the well-known decay
rate of the A 2⌃+ state. Choosing I!1 and �t!1�!2 , we
precisely control the initial peak density of the Rydberg
gas ellipsoid over a two-decade range from ⇢0 = 1010 to
1012 cm�3 [S1].

In the core of this ellipsoid, Rydberg molecules,
propagating in the molecular beam have a local
longitudinal temperature of T|| = 500 mK and a
transverse temperature, T? < 5 mK. These molecules
interact at a density-determined rate to form NO+ ions
and free electrons. Initially created electrons collide with
Rydberg molecules to trigger electron-impact avalanche
on a time-scale that varies with density from nanoseconds
to microseconds (see below).

II. SELECTIVE FIELD IONIZATION
SPECTROSCOPY OF ELECTRON BINDING

ENERGY

Selective field ionization (SFI) produces an electron
signal waveform that varies with the amplitude of
a linearly rising electrostatic field. Electrons in a
Rydberg state with principal quantum number, n, ionize
diabatically when the field amplitude reaches the electron
binding energy threshold, 1/9n2 [S2].

⇤ Author to whom correspondence should be addressed. Electronic
mail: edgrant@chem.ubc.ca

For low density Rydberg gases, SFI has served as an
exacting probe of the coupling of electron orbital angular
momentum coupling with core rotation. Studies of nitric
oxide in particular have shown that nf(2) Rydberg states
of NO traverse the Stark manifold to form NO+ in
rotational states N

+ = 2 and 0 [S3].
Experiments described in the main text operate in a

diabatic regime, employing a slew rate of 0.7 V cm�1

ns�1. Under these conditions, SFI features that appear
when the field rises to an amplitude of F V cm�1 measure
electrons bound by energy Eb in cm�1, according to Eb =
4
p
F .

Quasi-free electrons, weakly bound in the attractive
potential of more than one cation, ionize at a low field
that varies with the number of excess ions in the plasma.

The SFI spectrum presented in the text as Figure
1(c) and shown here as Figure S1 maps the electron
binding energy as a function of the initial Rydberg gas
density for a molecular nitric oxide ultracold plasma
after 500 ns of evolution. At a glance, the spectrum
at higher density (1012 cm�3) shows direct evidence of
either electrons bound to an increasing space charge or a
broader distribution of high-n Rydberg states.

This contracts to a narrower distribution of very
weakly bound electrons in plasmas of lower density
(1010 cm�3). Here we observe the spectrum of a
residue of molecules with the originally selected principal
quantum number of the Rydberg gas, shifted slightly to
deeper apparent binding energy by evident l-mixing or
slight relaxation in n.

We have used SFI measurements like these to
characterize the avalanche and evolution dynamics of a
great many Rydberg gases of varying density and initial
principal quantum number. Relaxation times vary, but
all of these spectra evolve to form the same final spectrum
of weakly bound electrons with traces of residual Rydberg
gas for systems of low initial density.

III. COUPLED RATE-EQUATION
SIMULATIONS OF THE ELECTRON-IMPACT
AVALANCHE TO ULTRACOLD PLASMA IN A

MOLECULAR RYDBERG GAS

The semi-classical mechanics embodied in a system
of coupled rate equations serves well to describe the
avalanche of a molecular Rydberg gas to ultracold
plasma. In this picture, Rydberg molecule densities,

mailto:edgrant@chem.ubc.ca
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FIG. S1. Selective field ionization spectrum spectrum as
a function of initial Rydberg gas density, ⇢0, after 500 ns
of evolution, showing the signal of weakly bound electrons
combined with a residual population of 49f(2) Rydberg
molecules, (initial principal quantum number, n0 = 49, in
the f Rydberg series converging to NO+ ion rotational state,
N+ = 2). After 10 µs, this population sharpens to signal
high-n Rydbergs and plasma electrons, with a residue of the
initial Rydberg population, shifted slightly to deeper binding
energy by l-mixing and perhaps some small relaxation in n.
The prominent feature that appears at the lowest values of
the ramp field gauges the potential energy of electrons in
high Rydberg states bound to single NO+ ions, combined
with electrons bound to the space charge of more than one
ion. Notice the binding effect of a slightly greater excess
positive charge at the highest initial Rydberg gas densities.
The red feature extends approximately to the binding energy
of n0 = 80 or 500 GHz.

labeled ⇢i, evolve over a ladder of principal quantum
numbers, ni, according to:

�d⇢i

dt
=

X

j

kij⇢e⇢i �
X

j

kji⇢e⇢j

+ki,ion⇢e⇢i � ki,tbr⇢
3
e + ki,PD⇢i (S1)

The free-electron density changes as:

d⇢e

dt
=

X

i

kion⇢
2
e �

X

i

k
i
tbr⇢

3
e � kDR⇢

2
e (S2)

A variational reaction rate formalism determines Te-
dependant rate coefficients, kij , for electron impact
transitions from Rydberg state i to j, k

i
ion, for

collisional ionization from state i and k
i
tbr, for three-

body recombination to state i [S4, S5]. Unimolecular
rate constants, ki,PD, describe the principal quantum
number dependant rate of Rydberg predissociation [S6–
S8], averaged over azimuthal quantum number, l [S9].
kDR accounts for direct dissociative recombination [S10]

The relaxation of molecules in the manifold of Rydberg
states determines the temperature of electrons released
by avalanche. Conservation of total energy per unit
volume requires:

Etot =
3

2
kBTe(t)⇢e(t)�R

X

i

⇢i(t)

n
2
i

+
3

2
kBT⇢

DR
e �R

X

i

⇢
PD
i

n
2
i

(S3)

where R is the Rydberg constant for NO, and ⇢
DR
e and

⇢
PD
i represent the number of electrons and Rydberg

molecules of level i lost to dissociative recombination and
predissociation, respectively [S11, S12].

To realistically represent the density distribution
produced by crossed-beam laser excitation of the
cylindrical distribution of NO ground-state molecules
in the molecular beam, we use a concentric system
of 100 shells of defined density spanning a Gaussian
ellipsoid to 5� in three dimensions. Avalanche proceeds
as determined by the initial Rydberg molecule density
of each shell. Each shell conserves the combined density
of stationary molecules, ions and neutral fragmentation
products. Electrons satisfy local quasi-neutrality, but are
otherwise assumed mobile, and thermally equilibrated
over the entire volume [S13].

A. The semi-classical evolution of an n0 = 80
Rydberg gas

Figure S2 shows the global evolution of particle
densities and electron temperature calculated for an
n0 = 80 Rydberg gas at an initial density of 4 ⇥
1010 cm�3 [S13], representing one limit of the SFI
spectrum obtained as above for an ultracold plasma in
its arrest state after an evolution time of 10 µs. By
this point, the real system begins a phase of unchanging
composition and very slow expansion that lasts at least
a millisecond – as long a period as we can observe it.

The the semi-classical simulation result shown in
Figure S2 tells us that the SFI spectrum shown in Figure
S1 cannot possibly signal a conventional gas of long lived
high-Rydberg molecules. Instead, a proven semi-classical
rate model configured for the density distribution of the
experiment, predicts the decay of such a high-Rydberg
gas to plasma on the timescale of a microsecond or less.

In the model, predissociation consumes residual
Rydbergs in all n-levels within a few microseconds
and the formation of neutral atomic products quickly
slows. This must occur conventionally because the
rising electron temperature stabilizes the classical plasma
state by suppressing three-body recombination. The real
arrested state, however, shows no sign of an electron
temperature higher than a few degrees K.
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FIG. S2. (lower) Numbers of ions and electrons, Rydberg
molecules and neutral dissociation products N(4S) and O(3P)
as a function of time during the avalanche of an n0 = 80
Rydberg gas of NO to form an ultracold plasma, as predicted
by a shell-model coupled rate equation simulation. Here we
represent the initial density distribution of the Rydberg gas
by a 5� Gaussian ellipsoid with principal axis dimensions,
�x = 1.0 mm, �y = 0.55 mm, �z = 0.7 mm and peak density
of 4 ⇥ 1010 cm�3, as measured for a typical experimental
plasma entering the arrest state after am evolution of 10 µs.
The simulation proceeds in 100 concentric shells enclosing set
numbers of kinetically coupled particles, linked by a common
electron temperature that evolves to conserve energy globally.
(upper) Global electron temperature as a function of time.

B. The semi-classical evolution of a fully ionized
ultracold plasma with Te(0) = 5 K

Let us instead test instead the kinetic stability of a
conventional ultracold plasma composed entirely of ions
and electrons. Again, we assume initial conditions that
fit with the observed properties of the arrest state: NO+

and electrons present at a density of 4 ⇥ 1010 cm�3

in an ellipsoid with Gaussian dimensions, �x = 1.0
mm, �y = 0.55 mm, �z = 0.7 mm, represented
by simulations evolving in 100 shells, with electron
temperature equilibration [S13]. In keeping with the
very slow rate of plasma expansion observed in the
experiment, we set the initial electron temperature to
5 K.

Figure S3 shows how this classical arrest state evolves
in time. The formation and rapid decay of NO Rydberg
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FIG. S3. (lower) Numbers of ions and electrons, Rydberg
molecules and neutral dissociation products N(4S) and O(3P)
as a function of time during the evolution of an ultracold
plasma of NO+ ions and electrons, as predicted by a shell-
model coupled rate equation simulation. Here we represent
the initial density distribution of the plasma by a 5� Gaussian
ellipsoid with principal axis dimensions, �x = 1.0 mm, �y =
0.55 mm, �z = 0.7 mm, peak density of 4 ⇥ 1010 cm�3

and initial electron temperature, Te(0) = 5 K, as measured
for a typical experimental plasma entering the arrest state
after am evolution of 10 µs. The simulation proceeds in 100
concentric shells enclosing set numbers of kinetically coupled
particles, linked by a common electron temperature that
evolves to conserve energy globally. (upper) Global electron
temperature as a function of time.

molecules signifies an immediate process of three-body
recombination, which decreases the charged particle
density of the plasma, Predissociation reduces the steady-
state density of Rydberg molecules to a value of nearly
zero, but three-body recombination persists as shown by
the rising density of neutral atom fragments. Eventually,
this process slows as the electron temperature rises.
Could this hot-electron ultracold plasma represent the
end state of arrested relaxation? Absolutely not. As
detailed in the next section, a plasma with an electron
temperature of 60 K would expand to a volume larger
than our experimental chamber in less than 100 µs.
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IV. AMBIPOLAR EXPANSION IN A PLASMA
WITH AN ELLIPSOIDAL DENSITY

DISTRIBUTION

The self-similar expansion of a spherical Gaussian
plasma is well-described by an analytic solution of
the Vlasov equations for electrons and ions with self-
consistent electric fields. For a distribution of width �,
in the limit of Te � Ti, this solution reduces to [S14]:

er� = kBTe⇢
�1r⇢ = �kBTe

r

�2
(S4)

In essence, the thermal pressure of the electron gas
produces an electrostatic force that radially accelerates
the ion density distribution according to the gradient
in the electrostatic potential. In approximate terms,
the expanding electrons transfer kinetic energy to the
ions, accelerating the distribution to an average ballistic
velocity,

kBTe ⇡ mi

⌦
v
2
i

↵
(S5)

The velocity varies linearly with radial distance, @tr =
�r, where � falls with time as the distribution expands,
and the electron temperature cools according to @tTe =
�2�Te.

To model the ellipsoidal plasma, we represent its
charge distribution by a set of concentric shells. In
this shell model, the density difference from each shell
j to shell j + 1 establishes a potential gradient that
determines the local electrostatic force in each principal
axis direction, k [S15]:

e

mi
r�k,j(t) =

@uk,j(t)

@t

=
kBTe(t)

mi⇢j(t)

⇢j(t)� ⇢j+1(t)

rk,j(t)� rk,j+1(t)
(S6)

where ⇢j(t) represents the density of ions in shell j.
The radial coordinates of each shell evolve according

to its instantaneous velocity along each axis, uk,j(t).

@rk,j(t)

@t
= uk,j(t) = �k,j(t)rk,j(t) (S7)

which in turn determines shell volume and thus its
density, ⇢j(t). The electron temperature supplies the
thermal energy that drives this ambipolar expansion.
Ions accelerate and Te falls according to:

3kB
2

@Te(t)

@t
= � miP

j Nj

X

k,j

Njuk,j(t)
@uk,j(t)

@t
(S8)

Figure S4 compares the ambipolar expansion of an
ellipsoidal plasma, simulated for an initial volume with
the starting dimensions described above and an initial
electron temperature of 60 K, compared with the time
evolution of the Gaussian width measured in z by
experiment. Note that the choice of a large initial
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m
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FIG. S4. Hydrodynamic expansion of a Gaussian ellipsoid
with the dimensions measured at 10 µs for the typical arrested
plasma described above, modeled by a 100-shell simulation,
assuming an electron temperature that rises to 60 K, with
curves, reading from the bottom on the left, for �y(t), �z(t)
and �x(t). The lower curve with data shows the measured
expansion of a typical molecular NO ultracold plasma with a
Vlasov fit for Te = 3 K.

volume intrinsically slows the simulated expansion. Yet,
nevertheless, the electron heating that arises inevitably
from three-body recombination in a classical ultracold
plasma demands a rate of expansion that is completely
unsupported by experimental observation.

V. EFFECTIVE MANY-BODY HAMILTONIAN

Experimental observations tell us that the molecular
ultracold plasma of nitric oxide evolves to a state
of arrested relaxation in which extravalent electrons
occupy a narrow distribution of weakly bound states.
This distribution of states supports a vast distribution
of pair-wise interactions, creating a random potential
landscape. Resonant dipole-dipole interactions in this
dense manifold of basis states cause excitation exchange.
In the disorder potential, these processes are dominated
by low energy-excitations involving L states in number,
where we expect L to be small (from 2 to 4). The most
probable interactions select L-level systems composed of
different basis states from dipole to dipole. Thus, the
states

��e1
↵
,
��e2

↵
...

��eL
↵

vary from one dipole to the next
and from time to time.

Representing excitations by spins, we can write an XY
model [S16] that describes these interactions in terms of
their effective spin dynamics

He↵=
X

i

✏iŜ
z
i +

X

i,j

Jij(Ŝ
+
i Ŝ

�
j + h.c.) (S9)

where Ŝ in each case denotes a spin-L operator defined
as Ŝ� = h̄�̂

�
/2, for which �

� is the corresponding spin-L
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Pauli matrix that spans the space of the L active levels
and � = x, y or z. h.c. refers to Hermitian conjugate.

Let us now consider specific examples of this
construction.

A. L = 2 case

Figure S5 diagrams a case that is uniquely defined
for every pair of interacting dipoles. In the limit
of isolated pairs, this two-level interaction is exactly
resonant. Conditions described below randomly displace
these energy level positions.

For each particular dipole i, described by states
��e1i

↵

and
��e2i

↵
, let us define a projection operator for the

higher-energy state (which we will call spin-up) �̂
e2
i =��e2i

↵ ⌦
e
2
i

�� = (1 + �̂
z
i )/2 and the lower-energy state (spin-

down) �̂
e1
i =

��e1i
↵ ⌦

e
1
i

�� = (1 � �̂
z
i )/2. Thus, we can

represent the two levels of a dipole i, with an energy
spacing ✏i, by a one-body operator ✏iŜ

z
i = (h̄✏i/2)�̂z

i .
This defines an energy ±h̄✏i/2 depending on which state��e2i

↵
or

��e1i
↵

is occupied, respectively, i.e.
��e2i

↵
⌘ |"ii and��e1i

↵
⌘ |#ii.

•
• •

•

Si
+Sj

-

i j i j

|ei
2> |ej

2>

|ei
1> |ej

1>

L = 2

|ej
2>

|ej
1>

|ei
2>

|ei
1>

• •
•

FIG. S5. Schematic diagram representing two Rydberg
molecules, i and j, dipole coupled in the two-level
approximation. In every case, the disorder in the environment
of each molecule perturbs the exact energy level positions of
|eii and |eji.

The onsite energy is given by ✏i = E
12
i +Di [S17], where

E
12
i is the energy separation between the two states

��e1i
↵

and
��e2i

↵
evaluated for the local Hamiltonian hi. hi varies

with the random potential landscape from one dipole to
the next and thus is responsible for the diagonal disorder
in the onsite term. Di =

P
j 6=i

⌦
e
2
i , e

1
j

��V dd
i,j

��e2i , e1j
↵
�⌦

e
1
i , e

1
j

��V dd
i,j

��e1i , e1j
↵

represents the shift in a dipole’s
energy due to dipole-dipole interactions [S17]. This term
is identically zero for parity-conserving states [S18].

Lowering and raising operators, �̂
�
i =

��e1i
↵ ⌦

e
2
i

�� and
its Hermitian conjugate �̂

+
i =

��e2i
↵ ⌦

e
1
i

��, define a resonant
spin flip-flop between dipoles i and j: Jij(Ŝ+

i Ŝ
�
j +h.c.) =

(h̄Jij/2)(�̂
+
i �̂

�
j + h.c.) with amplitude Jij = tij/r

3
ij ;

tij =
⌦
e
2
i , e

1
j

��V dd
i,j

��e1i , e2j
↵
. This refers to the dipole-dipole

mediated transfer of excitation [S17] represented by, for

example, Ŝ
+
i Ŝ

�
j |#ii |"ji = |"ii |#ji i.e.

��e2i
↵ ��e1j

↵ Ŝ+
i Ŝ�

j����!��e1i
↵ ��e2j

↵
. We can expect this class of matrix element to

be non-zero for many of the local eigenstates of hi and hj ,

as the dipole-dipole operator couples states of different
parity, limited only by a few selection rules [S18].

Additionally, we note that dipole-dipole interactions
lead to a two-body Ising term of the form Ŝ

z
i Ŝ

z
j .

This term originates from dipole-dipole induced shifts
of pairs of dipoles [S17] and has an amplitude⌦
e
2
i , e

2
j

��V dd
i,j

��e2i , e2j
↵
+

⌦
e
1
i , e

1
j

��V dd
i,j

��e1i , e1j
↵
. This term is

also identically zero for parity conserving states [S18].
Since, the arrested phase includes no external parity-
breaking fields and neglecting local field fluctuations, we
assume Di = 0 ! ✏i = E

12
i and no dipole-dipole induced

Ising interaction.

B. L > 2 cases

We can easily imagine systematic coupling schemes
that involve three or four L-level interactions. Excitation
transfer still governs the dynamics via terms like
Jij(Ŝ

+
i Ŝ

�
j + h.c.), where the Ŝ operators live in the

active L-dimensional subspaces. Figures S6 and S7
schematically detail examples of these interactions.

••
Si

+Sj
-

i j i j

|ei
2> |ej

2>

|ei
1> |ej

1>

L = 3

•

•

|ei
3> |ej

3>

|ej
2>

|ej
1>

|ej
3>

|ei
2>

|ei
1>

|ei
3>

•

•
• •

FIG. S6. Schematic diagram representing two Rydberg
molecules, i and j, dipole coupled in the limits of L = 3. In the
very high state density of the quenched ultracold plasma, the
displacement of

��e2i
↵

and
��e2j

↵
will will lessen the significance

of L = 3 interactions compared with the case of L = 4.

Figure S6 represents an interaction of overwhelming
importance in studies of Rydberg quantum optics.
Typically, a narrow bandwidth laser excites a resonant
pair state, such as 23P3/2 + 23P3/2 $ 23s + 24s in Cs
[S19]. Excitation transfer in this L = 3 case operates for
example as:

Ŝ
+
i Ŝ

�
j |Si = �1i |Sj = 1i = |Si = 0i |Sj = 0i , (S10)

i.e.
��e1i

↵ ��e3j
↵ Ŝ+

i Ŝ�
j����!

��e2i
↵ ��e2j

↵

For a gas of Rydberg molecules occupying a dense
manifold of disordered states, the case of L = 3 becomes
an operationally indistinguishable special case of the
more general L = 4 interaction, which maps onto a spin
of 3/2.

Here, we represent the interaction as an excitation
transfer that operates as:

Ŝ
+
i Ŝ

�
j |Si = �3/2i |Sj = 3/2i

= |Si = �1/2i |Sj = 1/2i , (S11)
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Si
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•
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•

FIG. S7. Schematic diagram representing two Rydberg
molecules, i and j, dipole coupled in the limits of L = 4.
The high state density and strong disorder in the quenched
ultracold plasma gives this case of L = 4 greater significance
than the restrictive limit of L = 3

i.e.
��e1i

↵ ��e4j
↵ Ŝ+

i Ŝ�
j����!

��e2i
↵ ��e3j

↵
.

We can extend such sequences to higher L, but low-
energy resonant dipole-dipole excitation exchange in the
dense manifold of basis states will most prominently
involve a small number of L-levels per dipole.

VI. INDUCED VAN DER WAALS
INTERACTIONS

For |Jij | << W , sequences of interactions add Ising
terms that describe a van der Waals shifts of pairs of
dipoles [S20]. Consider, for example, three mutually
nearest-neighbour spins i, j and k in the L = 2 case. A
third-order process couples spins i and j via spin k in the

following fashion: |#i, "j , "ki
Ŝ+
i Ŝ�

j����! |"i, #j , "ki
Ŝ+
j Ŝ�

k����!

|"i, "j , #ki
Ŝ+
k Ŝ�

i����! |#i, "j , "ki; defining a self interaction
that changes the pairwise energies of i, j.

Uij is inherently random owing to the randomness in
Jij . It is also important to note that this limit gives rise
to additional perturbative processes that renormalize the
local onsite fields by van der Waals terms and slightly
affect the pairwise flip-flop amplitudes [S20–S22]. We
simply absorb these effects in the definitions of ✏i and
Jij .

Taken together with Eq (S9) this result yields a
general spin model with dipole-dipole and van der Waals
interactions:

He↵ =
X

i

✏iŜ
z
i +

X

i,j

Jij(Ŝ
+
i Ŝ

�
j + h.c.)

+
X

i,j

UijŜ
z
i Ŝ

z
j (S12)

where Uij = Dij/r
6
ij and Dij = t

2
ij
eJ/W 2.

The appearance of this third term underlines the
many-body nature of Eq (S9). Even in this extreme limit,
its dynamics are non-trivial, clearly involving more than
spin flip-flops with emergent correlations between spins.

Non-resonant spin-spin interactions — The
appearance of the term,

P
i,j UijŜ

z
i Ŝ

z
j , underlines

the many-body nature of this model. One obtains this
term by treating Jij as a perturbation in Eq (S9) [S20].
For the L = 2 case, this occurs at the third order,
while for all other L, this term appears at the second
order [S20]. Thus, such a term arises generally in the
|Jij | ⌧ W limit in three dimensions.

The van der Waals interactions occur with an
amplitude, Uij ⇡ J

2
ij
eJ/W 2, where eJ estimates Jij at

the average distance separating spins. We do not expect
these interactions to depend strongly on the off-diagonal
disorder, as they arise from the off-resonant part ofP

i,j Jij(Ŝ
+
i Ŝ

�
j +h.c.), which presumably does not cause

real transitions [S20]. Thus, we can rationalize the use of
eJ here as an average weighting term. We leave the task
of studying the effect of off-diagonal disorder to future
work.

Non-resonant onsite interactions — It is also
important to note that this limit gives rise to additional
perturbative processes that renormalize the local onsite
fields

P
i ✏iŜ

z
i by van der Waals terms [S20].

Similar considerations from a completely different
atomistic perspective verify that this term is
approximately

P
l 6=i hC

ij
6 /r

6
ij where h is the Planck

constant and C
ij
6 denotes the C6 coefficients for the van

der Waals interaction between the off-resonant dipoles i

and j [S21, S22].
The induced onsite terms will also vary randomly

owing to the randomness in the potential landscape. We
simply absorb such terms in the definition of ✏i.

VII. RESONANCE COUNTING AND THE
NUMBER OF DIPOLES IN THE QUENCHED

ULTRACOLD PLASMA

Ref [S20] considers the problem of delocalization via
resonance counting arguments in the model of Eq S12
for the general case of ↵ < �, under conditions for which
d > dc. Here ↵ refers to the power law that regulates Jij
and � refers to Uij . d and dc stand for dimensionality
and critical dimensionality. This work concludes that
delocalization occurs at arbitrary disorder given sufficient
system size.

For local disorder, W , and average spin flip-flop
amplitude, eJ , the resonant pair criterion defines, Nc,
a critical number of dipoles above which the system
delocalizes. Here, we compare this theoretical estimate
with an accurate experimental measure of the number
of dipoles present in the arrest state of the quenched
ultracold plasma.

Controlled conditions of supersonic expansion precisely
define the cylindrical density distribution of nitric oxide
in the molecular beam [S1]. Co-propagating laser beams,
Gaussian !1 and !2, cross orthogonally in the x, y plane
to define a Gaussian ellipsoidal excitation volume.

When !2 saturates the second step of double
resonance, the intensity of !1 controls the peak density
of the Rydberg gas volume up to a maximum of 6 ⇥
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1012 cm�3, obtained upon saturation of the first step.
Density varies from shot to shot, and we have developed
an accurate means of classifying and binning individual
SIF traces according to initial Rydberg gas peak density,
as displayed in Figure S1. Coupled rate simulations
describing the kinetics of the avalanche of Rydberg gas
to plasma confirm these estimates of peak density.

TABLE S1. Distribution of ions in an idealized Gaussian
ellipsoid shell model of a quenched ultracold plasma of NO as
it enters the arrest state with a peak density of 4⇥1010 cm�3,
�x = 1.0 mm, �y = 0.55 mm and �z = 0.70 mm. At this
point, the quasi-neutral plasma contains a total of 1.9 ⇥ 108

NO+ ions (NO Rydberg molecules). Its average density is
1.4 ⇥ 1010 cm�3 and the mean distance between ions is 3.32
µm.

Shell Density Volume Particle Fraction aws

Num cm�3 cm3 Number ⇥100 µm
1 4.0⇥ 1010 1.8⇥ 10�6 7.0⇥ 104 0.04 1.81
2 3.9⇥ 1010 1.1⇥ 10�5 4.4⇥ 105 0.23 1.83
3 3.7⇥ 1010 9.0⇥ 10�5 3.3⇥ 106 1.75 1.86
4 3.3⇥ 1010 2.8⇥ 10�4 9.3⇥ 106 4.87 1.93
5 2.6⇥ 1010 8.3⇥ 10�4 2.2⇥ 107 11.52 2.08
6 2.1⇥ 1010 1.2⇥ 10�3 2.6⇥ 107 13.40 2.26
7 1.5⇥ 1010 1.8⇥ 10�3 2.8⇥ 107 14.46 2.49
8 1.1⇥ 1010 2.4⇥ 10�3 2.6⇥ 107 13.81 2.78
9 7.4⇥ 109 3.4⇥ 10�3 2.5⇥ 107 13.28 3.19

10 4.3⇥ 109 5.1⇥ 10�3 2.2⇥ 107 11.56 3.81
11 2.0⇥ 109 8.3⇥ 10�3 1.7⇥ 107 8.85 4.89
12 5.6⇥ 108 1.7⇥ 10�2 9.4⇥ 106 4.94 7.51
13 7.9⇥ 107 3.1⇥ 10�2 2.4⇥ 106 1.27 14.47
14 4.0⇥ 106 5.6⇥ 10�2 2.3⇥ 105 0.12 38.96
15 4.4⇥ 104 1.0⇥ 10�1 4.6⇥ 103 0.00 176.22

Two methods of plasma tomography determine the
evolution of plasma size and relative density distribution
as a function of time. In the SFI apparatus,
a perpendicular imaging grid that translates in the
molecular beam propagation direction, z, yields an
electron signal waveform that gauges the changing
plasma density and width as a function of evolution time.
This waveform, followed to a point of evident arrest at
about 5 µs, and well beyond, as illustrated by Figure 1
in the main text, establish a case for arrested relaxation.

Images projected in the x, y plane together with
waveforms in z, recorded after nearly 0.5 ms of flight,
detail a slow ballistic expansion in Cartesian coordinates
that we extrapolate back to an evolution time of 10
µs to determine the absolute density distribution of the
arrested ultracold plasma, described by the shell model
presented in Table S1. This representation neglects
the redistribution of charge density associated with the
initial stages of bifurcation. The total number of ions
represented by this distribution remains constant for
as long as we can measure it in our long flight-path
instrument, at least a half millisecond.

The ion density averaged over shells determines h|rij |i.
This average distance between dipoles, combined with a
a rough upper-limiting estimate of the average dipole-

dipole matrix element, htiji, based on values computed
for a �n = 0 Föster resonant interaction in Li [S22],
yields an upper-limiting estimate of eJ .

However, interaction with charged particles in the
plasma environment perturbs the electronic structure
of individual Rydberg molecules. This diminishes the
probability of finding resonant target states, decreasing
the real value of eJ , and giving rise to a rarity
and randomness of resonant dipole-dipole interactions
distributed over a huge state space defined by the
measured distribution of electron binding energies, W .

As noted in Figure S1, a simple measure of the width
of the plasma feature in the delayed SFI spectrum
determines W . Table S2 summarizes this and other
parameters of the arrest state derived from experiment,
including the eJ for Li under our conditions as an upper
limit.

For short range interactions in a one-dimensional spin
chain, perturbative arguments applied to disordered
interacting spin models, such as the one above, predict
many-body localization [S23]. However, in higher
dimensions especially, long-range resonant interactions
play an important role in defining the conditions under
which localization can occur. It is generally accepted that
interactions governed by a coupling amplitude, Jij that
decreases with distance as 1/r�ij delocalizes any system
at finite temperature for which the dimension, d exceeds
�/2.

However, building on ideas introduced by Anderson
[S24] and Levitov [S25], Burin [S20] offers a means by
which to test a dimensionally constrained system for
conditions that favor the onset of delocalization. He uses
a perturbation approach that defines limits over which
localization can occur in a system as modeled above in
which delocalization proceeds by the Ising interaction of
extended resonant pairs.

In this picture, a system that violates the dimension
constraint delocalizes for an arbitrary size of disorder
whenever the number of dipoles exceeds a critical
number, Nc, which is determined by the disorder width,
W and the average coupling strength, J̃ . Coupling terms
in the Hamiltonian defined by Eq S12 scale in r according
to ↵ = 3, � = 6 and d = 3. This sets a critical number
of dipoles defined by the quantity, Nc = (W/ eJ)4 [S20].
For the arrest state defined by the density distribution
described by the elliptical shell model in Table S1, the
measured W taken with our upper limiting estimate for
eJ , yields Nc = 3.6⇥ 109.

Considering this value of Nc in relation to the average
density of the system at arrest defines R

⇤, an effective
distance between resonant dipoles at which point this
occurs [S20]. For the conditions described in Table
S1, this coupling would occur in a system large enough
to contain 3.6 ⇥ 109 dipoles a distance of 4 mm or
more. At this distance, our upper-limiting dipole-dipole
matrix element would predict a characteristic irreversible
transition time, ⌧⇤ on the order of one second [S26].
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TABLE S2. Resonance counting parameters in the arrest
state of the quenched ultracold plasma. The disorder width
W , taken directly from the width of the plasma feature in the
SIF spectrum, combined with eJ – derived from a rough upper-
limiting estimate of the average dipole-dipole matrix element,
htiji, based on values computed for �n = 0 interactions in
alkali metals [S22], together with the mean distance between
NO+ ions in the shell model ellipsoid – determines Nc. a
critical number of dipoles required for delocalization. R⇤

describes the length scale for delocalization and ⌧⇤ denotes
the delocalization time, given a sufficient number of dipoles
at the average density of the experiment. Note that the
ultracold plasma quenched experimentally contains an order
of magnitude fewer than Nc dipoles.

W htiji h|rij |i eJ Nc R⇤ ⌧⇤

GHz GHz(µm)3 µm GHz µm s
500 75 3.3 2.0 3.6⇥ 109 4000 0.85

We note that the quenched ultracold plasma formed
experimentally relaxes to a volume that contains an order
of magnitude fewer dipoles than Nc, as determined for
this case by the model of Ref [S20].

As we attempt to convey above, the experiment yields
plasmas of well defined density distribution and total
number of dipoles. However, the precise nature of
the associated quantum states and their dipole-dipole
interaction is much less well known. This limits the
certainty with which we can determine Nc. What’s more
perturbation theory in a locator expansion formulation
may not accurately define the limiting conditions for
MBL in higher dimensions [S27].

Rare thermal regions (Griffiths regions) are thought
to destabilize MBL systems of higher dimension [S28–
S32], creating a glassy state, characterized by a slow

evolution to a delocalized phase. However, other results
contradict this notion, and support the possibility of
localization in all dimensions [S33]. An added feature in
the self-assembly of the molecular ultracold plasma may
preclude destabilization by rare thermal regions: Should
the quenched plasma develop a Griffiths region as a site
for delocalization to occur, the predissociation of relaxing
NO molecules would promptly deplete that region to a
void of no consequence.

In any event, the quenched plasma seems consistently
able to find the conditions necessary for arrested
relaxation. A great many different avalanche starting
conditions, defined by varying initial Rydberg gas
density and initial principal quantum number, all evolve
to retain comparable internal energy and yield an
arrest state with much the same density distribution
as that described by the shell model detailed in Table S1.
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